<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<meta name=Generator content="Microsoft Word 12 (filtered medium)">
<style>
<!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri","sans-serif";
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;}
@page Section1
        {size:612.0pt 792.0pt;
        margin:70.85pt 70.85pt 70.85pt 70.85pt;}
div.Section1
        {page:Section1;}
-->
</style>
<!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang=NL link=blue vlink=purple>
<div class=Section1>
<p class=MsoNormal><span lang=EN-US>Dear Donald,<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>I was wondering what the real probabilistic
part of SD_PROB is. The FOD glyphs themselves do not contain any true probabilistic
information: the lobes of these glyphs have certain widths because they are
only defined up until a certain resolution (a certain number of spherical
harmonics). The width of a lobe is therefore not a pure measure for the
uncertainty that a fiber population is oriented in that direction. To draw a
parallel with the diffusion tensor model: if we assume the main eigenvector e_1
of the DT gives the direction of the local fiber population, by bootstrapping
we can collect several e_1 estimates. If the direction of each e_{1,i} is given
by (\phi_i,\theta_i), we can uses these e_1 estimates to estimate P(\phi_i,\theta_i).
When doing fiber tracking, in every propagation step we choose a certain local
propagation direction (\phi_i,\theta_i) and we can calculate the product of P(\phi_i,\theta_i)
for all voxels i along the track to get a measure of the track probability. How
do this translate to fiber tracking based on CSD based FOD glyphs?<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>Best regards,<o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US><o:p> </o:p></span></p>
<p class=MsoNormal><span lang=EN-US>René Besseling<o:p></o:p></span></p>
</div>
</body>
</html>