Structural MRI Unwarping Using CMTK!

Release 1.4
Torsten Rohlfing

May 30, 2013

Neuroscience Program, SRI International, Menlo Park, CA

Abstract

This document describes the workflow for unwarping structural MR images, in particular 77-weighted
SPGR and MP-RAGE scans, using reference scans of the Magphan® EMRO051 Quantitative Imaging
Phantom (a.k.a. ADNI Phantom) and the tools of the Computational Morphometry Toolkit (CMTK).

Contents
1 Introduction 2
2 What You Need and Where You Get It 2
2.1 Structural Imaging Phantom 2
22 CMTK . . . e 3
3 Step-by-Step 3
3.1 Imaging e e e e e 3
3.2 DICOM Image Stacking e e 3
3.3 Phantom Detection e 5
3.4 Fault-Tolerant Phantom Detection v it 5
3.5 Create Unwarping Transformation, 7
3.6 Correction With and Without Unwarping 7
4 Concluding Remarks S
A Example Data 10
B Example XML Phantom File 10
C Phantom Geometry 13

IThis document is licensed under the Creative Commons Attribution License Version 3.0.

L2 INT3

Figure 1: The Magphan® EMRO051 Quantitative Imaging Phantom, seen from “anterior,
perior” direction (in “patient coordinates,” pictures from left to right).

right,” and “su-

1 Introduction

Nonlinear distortions and drift of scale calibration can severely confound imaging-based studies, especially
when run on multiple scanners or even at multiple imaging sites.

The Magphan® EMRO051 Quantitative Imaging Phantom (also known as the “ADNI Phantom” after the
Alzheimer’s Disease Neuroimaging Initiative) provides a technical solution for detecting, and ultimately
correcting, the effects of nonlinearity as well as drift over time, whether on a single scanner or across
devices.

Unfortunately, software tools to make practical use of the phantom are not freely available [1] (see also [3]).

We describe in this article for the first time a workflow implementing the correction of scanner miscalibration
and nonlinearities using only freely available data and software tools. Example image data is provided with
the article. Source code for all software tools is available from http://nitrc.org/projects/cmtk/.

2 What You Need and Where You Get It

We will assume you already have an MR scanner. If not, pick up a used one on eBay. Make sure you keep
an eye on the shipping charges.

2.1 Structural Imaging Phantom

You will need the “Magphan® EMRO051 Quantitative Imaging Phantom” (also known as “The ADNI Phan-
tom” [1]), http://www.phantomlab.com/products/magphan_adni.php. Photos of one such phantom
are shown in Fig. 1.

The phantom can be purchased from the manufacturer, The Phantom Laboratory, P.O. Box 511, Salem, NY,
12865-0511 USA. These are expensive — hope you saved some cash when you bought your scanner.

http://nitrc.org/projects/cmtk/
http://www.phantomlab.com/products/magphan_adni.php

2.2 CMTK 3

2.2 CMTK

Unlike the previous two items, The Computational Morphometry Toolkit (CMTK) is free, and that’s as
in both free beer and free speech. CMTK is available both in source code, licensed under the GPLV3,
and as pre-compiled binary distributions from http://nitrc.org/projects/cmtk/. If you are using
NeuroDebian, you can also install CMTK directly.

We shall assume that CMTK has been installed such that its tools can be run as
cmtk <tool> <argl> <arg2> ...

You will need CMTK release 2.2.0 or later. Earlier versions do not support phantom detection of
landmark-based nonlinear deformations.

3 Step-by-Step

3.1 Imaging

The imaging phantom should be placed in the scanner according to manufacturer instructions and 7;-
weighted images should be acquired using the site-preferred imaging sequence (e.g., SPGR or MP-RAGE).

It is important to make sure that the entire phantom is contained within the acquisition field of view.
Add slices if necessary.

Example DICOM images of the phantom acquired with “sagittal” slice orientation and full coverage are
shown in Fig. 2.

3.2 DICOM Image Stacking

Assume that the DICOM files containing the phantom images are stored in the “dicom/” directory. These
are stacked into a 3D image in NIFTI-format using the following CMTK command:

cmtk dem2image —O phantom.nii dicom/

Make sure only the DICOM files of the actual structural scans are in the “dicom/” directory, that is, not
additional files such as scout images'.

While CMTK supports a number of file formats, only NIFTI or NRRD format should be used for storing
the phantom image. The same is true for any patient images to be unwarped. The reason for this limita-
tion is that, of the supported formats, only NIFTI and NRRD preserve the physical scanner coordinates at
which the images were acquired. This information is absolutely necessary to determine the correct spatial
relationship between phantom and subject images. Without establishing this relationship, images cannot be
unwarped.

Otherwise, you can change the output file name to “phantom®n.nii”, which will result in multiple, numbered output images.
You will then need to identify the correct one.

http://nitrc.org/projects/cmtk/

3.2 DICOM Image Stacking 4

Figure 2: Thumbnails of selected DICOM images acquired using SPGR acquisition on a GE MRI scanner
(total number of slices in the acquisition was 176).

3.3 Phantom Detection 5

Figure 3: Triplanar view of an SPGR image of the Magphan® EMRO051 Quantitative Imaging Phantom (left)
and color-coded label map of phantom spheres detected by CMTK’s detect_adni_phantom tool.

3.3 Phantom Detection

Next, run the phantom image through the CMTK phantom detection tool. (For hands-on testing, we are
providing a NIFTI image of an actual SPGR phantom scan with this article.)

cmtk detect_adni_phantom phantom.nii phantom.xml

This will produce an XML file, “phantom.xml” containing, among other information, the expected as well
as detected locations of the centers of all landmark spheres in the phantom. These locations provide the
basis for image unwarping. (An example of a generated XML file with a detailed description of its contents
can be found in Appendix B)

To verify landmark locations, the phantom detection tool can optionally write a label image matching the
input image, in which the volume of each detected phantom sphere is marked with a unique label. To this
end, add “~——write-labels labels.nii” to the above command line to produce the labels file. See Fig. 3
for an example of three orthogonal slices from a phantom image with corresponding labeled spheres.

3.4 Fault-Tolerant Phantom Detection

Not all MR scans of the imaging phantom may be of ideal quality, and sub-standard scans may cause
phantom detection to fail. Examples are images with insufficient field-of-view, where not all phantom
spheres are actually fully covered. Also the phantom itself may be degraded, resulting in insufficient contrast
of some spheres.

By default, the phantom detection tool will terminate operation with an error message if problems such
as missing or undetectable spheres are encountered. To produce potentially usable results in these cases,

3.4 Fault-Tolerant Phantom Detection 6

however, the tool offers an optional “tolerant” mode of operation (beginning with CMTK Release 2.3.0).
This mode is invoked by adding the “~—tolerant” option to the command line:

cmtk detect_adni_phantom ——tolerant phantom.nii phantom.xml

Note that in this mode, the tool can even potentially recover from otherwise fatal conditions, such as a
missing 15 mm-diameter sphere (which is required by the standard phantom detection algorithm to establish
gross phantom orientation). Instead, in tolerant mode, the detection tool will attempt to bootstrap orientation
from the positions of the 30 mm-diameter CNR spheres, and the only requirement here is that the Orange
CNR sphere appears with the highest intensity of all four CNR spheres (thus making detection robust even
when doping of the CNR spheres is compromised with respect to one another).

In more technical detail, the phantom detection tool identifies the phantom orientation using the following
procedure:

1. The 60 mm SNR sphere and all four 30 mm CNR spheres are detected independently using an FFT-
based matched, bipolar filter.

2. The two 15 mm spheres are detected, again using a matched filter. Search for each sphere is con-
strained to a ring of appropriate radius around the center of the 60 mm sphere.

3. The angle is computed between the two lines from the SNR sphere to each of the 15 mm spheres. The
same is done for the lines from the centroid of the four CNR sphere centers to each of the 15 mm
spheres.

4. If the resulting angle is closer to 90 degrees for the CNR-spheres centroid, then the latter is used as
the phantom center rather than the center of the SNR sphere (this makes the procedure robust against
phantoms with broken-off SNR spheres).

5. If the angle between lines from the the selected phantom center to the two 15 mm spheres is within the
range of 85 to 95 degrees, then the coordinate system defined by the 15 mm spheres and the phantom
center is used to establish gross phantom orientation (via a least-squares rigid alignment).

6. If said angle is outside the valid range, this indicates that one or both of the 15 mm spheres are
missing or could not be detected for other reasons. In this case, the brightest CNR sphere (“Orange”)
is identified by comparing mean intensities across all four CNR spheres. The CNR sphere closest to
is identified as the “Green” sphere. Together with the center of the SNR sphere, these two landmarks
define a coordinate system that is used as the third and final alternative for establishing phantom
orientation.

In summary, phantom detection as implemented above can tolerate all three of the following phantom de-
fects: a) one or two missing 15 mm spheres, b) misplaced SNR sphere, ¢) out-of-order CNR sphere intensi-
ties (so long as the “Orange” sphere remains the brightest).

In order to support this level of robustness, the phantom detection tool does have to make one assumption
about the way that the phantom is scanned, namely that the phantom was scanned with the correct side
facing up (the A direction in patient coordinates). If the phantom was scanned upside-down, then detection
will fail, unless the “~—any-orientation” command line option is invoked (which, in turn, will lead to
detection failures with defective phantoms).

3.5 Create Unwarping Transformation 7

3.5 Create Unwarping Transformation

From the phantom description file, we can create an unwarping transformation using the following CMTK
command (to be entered on a single command line):

cmtk unwarp_image phantom ——final-cp-spacing 40 ——levels 2 \
phantom.xml phantom.nii unwarp.xform

This will generate a nonrigid transformation, “phantom warp.xform” in the space of the image
“phantom.nii.” If a subject image, “subject.nii,” is to be unwarped, the command should be changed
to (again entered on a single command line):

cmtk unwarp_image phantom ——final-cp-spacing 40 —-levels 2 \
phantom.xml subject.nii unwarp.xform

Note that a separate transformation must be created for every image to be unwarped, as each image
has different physical coordinates.

For now, the only supported representation for the unwarping transformation is a B-spline free-form defor-
mation [4], which requires specification of a final control point spacing (here: 40 mm) and is improved by
specifying also a number of multi-resolution levels for the spline fitting process (here: 2 levels) [2]. Future
versions of CMTK will implement a thin-plate spline, in which each landmark will be used directly as a
control point.

3.6 Correction With and Without Unwarping

Using the deformation field fitted to the phantom landmark locations, the phantom image can be unwarped
as follows (entering the command on a single command line):

cmtk reformatx ——sinc-cosine -o unwarped.nii ——floating phantom.nii \
phantom.nii unwarp.xform

The phantom image, “phantom.nii,” is listed twice because it is both the floating (moving) and the refer-
ence (fixed) image. Again, if a separate subject image is to be unwarped, the command changes to

cmtk reformatx ——sinc-cosine -o unwarped.nii ——floating subject.nii \
subject.nii unwarp.xform

But do you really want to unwarp the image in the first place?

Here’s something to consider — unwarping the image, phantom or subject, requires interpolation and thus
introduces smoothing, even though we are using a sinc-kernel above. That’s fine if you really need to know
what anatomy is exactly where, say to use the unwarped image for guiding implantation of a deep-brain
stimulator. (Except, it is not fine, because CMTK is not FDA approved, so don’t do it!)

But what if you only want to unwarp the image to get the correct tissue or region volumes somewhere
down your processing pipeline? Then you might actually be making things worse, for example for tissue
segmentation, by blurring the image ever so slightly.

Instead, what you really want to know is how the volume of each pixel changes due to distortion so you can
compute correct region and tissue volumes. Well, we can do that without interpolation.

What we need for this correct is a map that tells us, for each pixel, how much larger (or smaller) its volume
really is, relative to the ideal volume as prescribed in the imaging protocol. Mathematically speaking, we
need the map of Jacobian determinants of the inverse unwarping transformation in the coordinate space of
the acquired image. Unfortunately, we also need this map deformed using the inverse of the transformation
itself.

CMTK can give us this exact type of map using the following command (here, for a subject image, but
analogous for the phantom image itself if you care):

cmtk reformatx —o pxvolume.nii subject.nii ——inverse unwarp.xform ——Jjacobian \
——inverse unwarp.xform

Equivalently, we can use the following two commands to avoid at least the second numerical inversion of
the nonrigid transformation:

cmtk reformatx —o temporary.nii subject.nii ——inverse unwarp.xform ——Jjacobian \
unwarp.xform
cmtk imagemath ——in temporary.nii ——one—over ——out pxvolume.nii

This makes use of the fact that the Jacobian determinant of forward and inverse transformations are related
by

Jr-(T (X)) = 1/Jr(%)
for a transformation 7 and any location X. The former command above computes the left-hand side of this
equation, whereas the latter two-command sequence computes its right-hand side.

The best way, however, to create a Jacobian volume correction map is to avoid inversion of the unwarping
transformation altogether by simply fitting a deformation to the “inverse” phantom landmarks instead, i.e.,
to the landmarks with detected and expected positions exchanged. The fitting tool (beginning with CMTK
Release 2.3.1) provides the “——fit-inverse” option for just this purpose:

cmtk unwarp_image phantom ——fit-inverse ——final-cp-spacing 40 —-levels 2 \
phantom.xml phantom.nii unwarp_inverse.xform

Then we can simply evaluate the Jacobian of the fitted inverse transformation to obtain the volume correction
map:

cmtk reformatx —o pxvolume.nii subject.nii ——jacobian unwarp inverse.xform
Either way, the resulting image, “pxvolume.nii,” contains at each pixel the true volume of that pixel. By

multiplying these values with tissue volumes resulting from segmentation of the original image, we can
obtain distortion-corrected volumes without actually unwarping and thus blurring the original image.

4 Concluding Remarks

At the time of writing, several of the software tools described herein (CMTK’s “detect_adni_phantom’
and “unwarp_phantom_image” tools) are still considered work-in-progress. We are making these tools

References 9

and this article available to provide the community with an opportunity to evaluate our software in a timely
fashion. Production use, however, it not recommended at this time.

Acknowledgments

This work was supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) under
Grant No. U01 AA021697, National Consortium for Alcohol and NeuroDevelopment in Adolescence (N-
CANDA), Data Analysis Component.

Despite the name “ADNI Phantom” none of the materials used in this article and none of the phantom-
related code in CMTK make use of any ADNI data or documentation, other than a cursory inspection of
Ref. [1]. In particular, the geometric specifications of the phantom itself were derived from the phantom
manual, available from http://www.phantomlab.com/library/pdf/magphan_adni_manual.pdf The
table representing the geometry in CMTK’s source code is included in Appendix C and can be re-used
under the terms of the CC-BY-3.0 license.

Use of the materials and software tools described in this article does not establish a requirement to
acknowledge ADNI on the author list of subsequent publications [3].

References

[1] J. L. Gunter, M. A. Bernstein, B. J. Borowski, C. P. Ward, P. J. Britson, J. P. Felmlee, N. Schuff,
M. Weiner, and C. R. Jack. “Measurement of MRI scanner performance with the ADNI phantom.”
Medical Physics, 36(6):2193-2205, 2009. http://dx.doi.org/10.1118/1.3116776. 1,2.1, 4

[2] S. Lee, G. Wolberg, and S. Y. Shin. “Scattered data interpolation with multilevel B-splines.” [EEE
Transactions on Visualization and Computer Graphics, 3(3):228-244, 1997. http://dx.doi.org/
10.1109/2945.620490. 3.5

[3] T. Rohlfing and J.-B. Poline. “Why shared data should not be acknowledged on the author byline.”
Neurolmage, 59(4):4189-4195, 2012. http://dx.doi.org/10.1016/j.neuroimage.2011.09.080.
PMID 22008368. 1, 4

[4] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. “Nonrigid registra-
tion using free-form deformations: Application to breast MR images.” IEEE Transactions on Medical
Imaging, 18(8):712-721, 1999. http://dx.doi.org/10.1109/42.796284. 3.5

http://www.phantomlab.com/library/pdf/magphan_adni_manual.pdf
http://dx.doi.org/10.1118/1.3116776
http://dx.doi.org/10.1109/2945.620490
http://dx.doi.org/10.1109/2945.620490
http://dx.doi.org/10.1016/j.neuroimage.2011.09.080
http://dx.doi.org/10.1109/42.796284

10

A Example Data

This article is provided with an example image (“phantom.nii.gz”) of an actual phantom. Running
CMTK’s phantom detection tool on this image (with increased verbosity level for some intersting statis-
tics) yields:

> cmtk detect_adni_phantom ——verbose-level 2 ——write-labels labels.nii \
phantom.nii.gz phantom.xml

INFO: landmark fitting error average = 0.725241 maximum = 1.77297
maxErrName = 10mm_O_12 maxErrLabel = 19

INFO: detected and matched 160 out of 160 expected landmarks.

This produces the phantom description file, “phantom.xml.” The contents of this file are explained below
in Appendix B.

We also see that all landmarks were successfully detected and the average linear transformation fitting
residual over all landmarks was 0.72 mm. The sphere with the maximum residual is “10mm_0_12," i.e., the
12th of the 10 mm spheres in Plane 0 of the phantom. (This sphere is labeled as ROI #19 in the phantom
label file, “labels.nii.”

Using the XML phantom description, we can generate a nonrigid transformation for phantom unwarping:

> cmtk unwarp_image_phantom ——final-cp-spacing 40 —levels 2 phantom.xml \
phantom.nii.gz phantom.xform

Finally, we can use this transformation, “phantom.xform,” to create the unwarped phantom image:

cmtk reformatx —o unwarped.nii ——floating phantom.nii.gz phantom.nii.gz \
phantom.xform

B Example XML Phantom File

The detect_adni_phantom tool creates an XML file that contains a description of the phantom detected
in a given image. An example of the contents of this file is shown below.

First, the file contains the XML header and the name of the represented phantom:

<?xml version="1.0" encoding="utf-8"?>
<phantom>
<phantomType>MagphanEMR0O51</phantomType>

Next, the file contains the estimated signal-to-noise ratio (based on the phantom’s SNR sphere) and four
estimates of contrast-to-noise ratio (each based on one of the four CNR spheres and its contrast relative to
the SNR sphere):

<snr>18.304893</snr>
<cnr>14.469221 35.670155 29.324328 28.170110</cnr>

11

Following is the list of detected landmarks — all coordinates are given in physical image coordinates, de-
rived ultimately from the DICOM headers but represented in “RAS” coordinates (which means that x and y
coordinates are negative relative to DICOM’s “LPS” coordinates):

<landmarkList coordinates="physical" space="RAS" count="165">

The count attribute provides the number of successfully detected landmarks (which may be lower than 165
in “tolerant” phantom detection mode).

Immediately following, for each landmark, its unique name, expected location, detected location, precision
flag, and fitting residual are stored. The landmark name is essentially arbitrary and based on the table of
phantom landmarks as shown in Appendix C.

The expected location is where the sphere center should be located in the phantom image if the transforma-
tion between ideal phantom and image was rigid (i.e., no scale, no shear, no nonlinearity).

The detected location is where the sphere center was actually detected in the image.

The precision flag specifies whether the ideal location of this sphere should be considered as precise based
on the phantom construction (e.g., the SNR and CNR spheres have manufacturing tolerances that make their
locations unprecise). Only landmarks with this flag set to “yes” should be used for regstration.

The fitting residual is the Euclidean distance between the detected landmark location and the expected
location according to a linear fit of all landmarks. Note that here, the linear fit may include anisotropic scale
and shears, i.e., the residual is not simply the distance between expected and detected location as stored in
the file. The purpose of this residual is to allow the transformation fitting tool to exclude outliers based on a
threshold of allowable residual.

<landmark>
<name>SNR</name>
<expected>-2.081532 29.672649 —4.689435</expected>
<detected>-4.846132 28.367746 —4.338875</detected>
<isPrecise>no</isPrecise>
<fitResidual>3.078036</fitResidual>

</landmark>

<landmark>
<name>15mm@90nm< /name>
<expected>86.924671 28.899446 —7.279399</expected>
<detected>87.598368 29.497402 -7.207202</detected>
<isPrecise>no</isPrecise>
<fitResidual>1.000909</fitResidual>

</landmark>

<landmark>
<name>15mm@ 60nmm< /name>
<expected>-3.739912 29.019053 -64.733024</expected>
<detected>-3.855809 30.500179 -65.321349</detected>
<isPrecise>no</isPrecise>
<fitResidual>1.687546</fitResidual>

</landmark>

<landmark>
<name>CNR-Orange</name>

12

<expected>57.536139 46.089755 —5.790284</expected>
<detected>58.235312 51.039218 -6.136547</detected>
<isPrecise>no</isPrecise>
<fitResidual>4.948012</fitResidual>

</landmark>
<landmark>

<name>CNR-Red</name>

<expected>—62.383089 43.226012 -2.446989</expected>
<detected>-63.540399 48.950964 —2.568987</detected>
<isPrecise>no</isPrecise>
<fitResidual>5.653304</fitResidual>

</landmark>
<landmark>

<name>CNR-Yellow</name>

<expected>—-61.699203 13.255542 —-3.588586</expected>
<detected>-62.273718 6.096574 -3.753603</detected>
<isPrecise>no</isPrecise>
<fitResidual>7.112524</fitResidual>

</landmark>
<landmark>

<name>CNR-Green</name>

<expected>58.220025 16.119286 —6.931881</expected>
<detected>58.497813 9.654831 —7.491801</detected>
<isPrecise>no</isPrecise>
<fitResidual>6.319076</fitResidual>

</landmark>
<landmark>

<name>10mm_0_01</name>

<expected>-89.285621 28.732528 -32.248880</expected>
<detected>-90.196775 29.579927 —32.380159</detected>
<isPrecise>yes</isPrecise>
<fitResidual>1.186873</fitResidual>

</landmark>
<landmark>

<name>10nmm_0_02</name>

<expected>-87.561132 26.488978 27.684355</expected>
<detected>-87.875622 26.872772 26.667286</detected>
<isPrecise>yes</isPrecise>
<fitResidual>0.919448</fitResidual>

</landmark>

[more landmarks]

</landmarkList>
</phantom>

13

C Phantom Geometry

/*
* Measurements were derived manually from the following document :
* http://www.phantomlab.com/library/pdf/magphan_adni_manual .pdf
* They can, therefore, be used without reference to ADNI publications.
*/
const cmtk: :MagphanEMRO51 : : SphereEnt ryType
cmtk : :MagphanEMR0OS51 : : SphereTable [cmtk : :MagphanEMRO51 : : NumberOfSpheres] =
{
//
// LICENSING EXCEPTION
// Unlike the remainder of this file, the table of phantom sphere coordinates
// is licensed under the CC BY 3.0 license
// (https://creativecommons.org/licenses/by/3.0/us/)

//
// 1x 6.0cm SNR sphere
{ "SNR", 60, { 0.0, 0.0, 0.0 }, 0.820, 282, Self::SPHERE COLOR NONE },

// 2x 1.5cm spheres

{ "15mm@90mm", 15, { 89.0, -2.9, 0.0 }, 0.820, 282, Self::SPHERE_COLOR NONE },

{ "15mm@60mm", 15, { 0.0, -2.9, -60.0 }, 0.820, 282, Self::SPHERF_COLOR NONE },

// 4x 3.0cm spheres — estimated y coord’s —— these are not marked in construction drawing
{ "CNR-Orange", 30, { 60.0, 20.0, 0}, 0.590, 450, Self::SPHERE_COLOR _ORANGE },

{ "CNR-Red", 30, { -60.0, 20.0, O}, 0.430, 600, Self::SPHERE COLOR RED },

{ "CNR-Yellow", 30, { -60.0, -20.0, O }, .295, 750, Self::SPHERE_COLOR YELLOW },

{ "CNR-Green", 30, { 60.0, -20.0, 0 }, .220, 900, Self::SPHERE_COLOR _GREEN },

// 158x 1.0cm spheres

0
0

// Plane 0

// outer ring

{ "10mm_0_0O1", 10, { -86.4, 0.0, -30.0 }, 0.820, 282, Self::SPHERE_COLOR NONE },
"10rm_0_0O2", 10, { -86.4, 0.0, 30.0 }, 0.820, 282, Self::SPHERE_COLOR NONE },
"10rm_0_0O3", 10, { 86.4, 0.0, -30.0 }, 0.820, 282, Self::SPHERE,_COLOR NONE },
"10mm_0_04", 10, { 86.4, 0.0, 30.0 }, 0.820, 282, Self::SPHERE _COLOR NONE },
"10mm_0_0O5", 10, { -64.7, 0.0, ©64.7 }, 0.820, 282, Self::SPHERE COLOR NONE },
"10rm_O_0O6", 10, { -64.7, 0.0, —-64.7 }, 0.820, 282, Self::SPHERE,_COLOR NONE },
"10rm_0_0O7", 10, { 64.7, 0.0, 64.7 }, 0.820, 282, Self::SPHERE,_COLOR NONE },
"10rm_0_0O8", 10, { 64.7, 0.0, —-64.7 }, 0.820, 282, Self::SPHERE,_COLOR NONE },
"10rmm_0_0O9", 10, { -30.0, 0.0, 86.4 }, 0.820, 282, Self::SPHERF,_COLOR NONE },
"10mm_0_10", 10, { -30.0, 0.0, -86.4 }, 0.820, 282, Self::SPHERE COLOR NONE },
"10mm 0_11", 10, { 30.0, 0.0, 86.4 }, 0.820, 282, Self::SPHERE COLOR NONE },
"10mm_0_12", 10, { 30.0, 0.0, —-86.4 }, 0.820, 282, Self::SPHERE_COLOR NONE },
"10rmm_0_13", 10, { 0.0, 0.0, 91.5 1}, 0.820, 282, Self::SPHERE_COLOR NONE },
"10mm_0_14", 10, { 0.0, 0.0, -91.5 }, 0.820, 282, Self::SPHERE_COLOR _NONE },

/ middle ring

"10mm _0O0_15", 10, { -30.0, 0.0, 60.0 }, 0.820, 282, Self::SPHERE COLOR _NONE },
"10mm_O_16", 10, { -30.0, 0.0, -60.0 }, 0.820, 282, Self::SPHERE_COLOR NONE },
"10mm O_17", 10, { 30.0, 0.0, 60.0 }, 0.820, 282, Self::SPHERE COLOR NONE },
"10mm_0_18", 10, { 30.0, 0.0, -60.0 }, 0.820, 282, Self::SPHERE_COLOR NONE },
"10mm_O0_19", 10, { -60.0, 0.0, 30.0 }, 0.820, 282, Self::SPHERE_COLOR NONE },
"10mm_0O0_20", 10, { -60.0, 0.0, -30.0 }, 0.820, 282, Self::SPHERE COLOR_NONE },
"10mm _0O0_21", 10, { 60.0, 0.0, 30.0 }, 0.820, 282, Self::SPHERE COLOR_NONE },
"10mm_O0_22", 10, { 60.0, 0.0, -30.0 }, 0.820, 282, Self::SPHERE_COLOR NONE },

B S N N N N N AN A L N U VI

/ inner ring

14

{ "10mm_O0_23", 10, { -30.0, 0.0, 30.0 },

{ "10mm _0_24", 10, { -30.0, 0.0, —-30.0 },

{ "10mm _0_25", 10, { 30.0, 0.0, 30.0 },

{ "10mm_0_26", 10, { 30.0, 0.0, -30.0 },
// single inferior mid-sagittal sphere

{ "10mm_0_27", 10, { 0.0, 0.0, 60.0 },
// single right sphere

{ "10mm _0_28", 10, { -91.5, 0.0, 0.0 1},
// Plane 1

// mid-sagittal

{ "10mm_1_ 01", 10, { 0.0, -30.0, 40.0 1},
{ "10mm_1 02", 10, { 0.0, -30.0, -40.0 },
{ "10mm_1_03", 10, { 0.0, -30.0, 86.5 },
{ "10mm_1_04", 10, { 0.0, -30.0, -86.5 },
{ "10mm_1_05", 10, { 0.0, -30.0, 60.0 },
{ "10mm_1_06", 10, { 0.0, -30.0, -60.0 },
// +— 30mm lateral

{ "10mm_1_07", 10, { 30.0, -30.0, 81.1 },
{ "10mm _1_08", 10, { 30.0, -30.0, -81.1 },
{ "10mm_1_09", 10, { -30.0, -30.0, 81.1 },
{ "10mrm_1_10", 10, { -30.0, -30.0, -81.1 3},
{"10Omm21 11", 10, { 30.0, -30.0, 60.0 },
{ "10mm 1 12", 10, { 30.0, -30.0, -60.0 },
{ "10mm 1_13", 10, { -30.0, -30.0, 60.0 },
{ "10mm_1_14", 10, { -30.0, -30.0, -60.0 },
{ "10mrm_1_15", 10, { 30.0, -30.0, 30.0 },
{ "10mm_1_16", 10, { 30.0, -30.0, -30.0 },
{"1Omm21 17", 10, { -30.0, -30.0, 30.0 },
{ "10mm 1_18", 10, { -30.0, -30.0, -30.0 },
// +- 60mm lateral

{ "10mm_1_19", 10, { 60.0, -30.0, 30.0 },
{ "10mm_1_20", 10, { 60.0, -30.0, -30.0 },
{ "10mm 1 21", 10, { -60.0, -30.0, 30.0 },
{ "10mm_1_22", 10, { -60.0, -30.0, -30.0 },
// +— 61lmm lateral

{ "10mm_1_23", 10, { 61.0, -30.0, 61.0 },
{ "10mm_1_24", 10, { 61.0, -30.0, —-61.0 },
{ "10mm_1_ 25", 10, { -61.0, -30.0, 61.0 },
{ "10mm_1 26", 10, { -61.0, -30.0, -61.0 },
// +— 81.1mm lateral

{ "10mm_1_27", 10, { 81.1, -30.0, 30.0 },
{ "10mm_1_28", 10, { 81.1, -30.0, -30.0 },
{ "10mm_1_29", 10, { -81.1, -30.0, 30.0 },
{ "10mm_1_ 30", 10, { -81.1, -30.0, -30.0 },
// +— 86.5mm lateral

{ "10mm 1_31", 10, { 86.5, -30.0, 0.0 1},
{ "10mm_1_32", 10, { -86.5, -30.0, 0.0 },
// Plane 1lb

// +— 15mm lateral

{ "10mm_1b 01", 10, { 15.0, 29.1, 45.0 },
{ "10mm_1b 02", 10, { 15.0, 29.1, 65.0 },
{ "10mm_1b 03", 10, { 15.0, 29.1, 85.2 },
{ "10mm_1b 04", 10, { 15.0, 29.1, -45.0 },
{ "10mm_1b_05", 10, { 15.0, 29.1, -65.0 },

O O O O

.820,

282,

Self:

:SPHERE_COLOR_NONE

.820,
.820,
. 820,
.820,

.820,

.820,
.820,
.820,
.820,
.820,
.820,

O O O O o o

.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,

O O O O O OO oo o oo

.820,
.820,
.820,
.820,

o O O o

.820,
.820,
.820,
.820,

o O O o

.820,
.820,
.820,
.820,

o O O o

0.820,
.820,

(@]

.820,
.820,
.820,
.820,
.820,

O O O O O

282,
282,
282,
282,

282,

282,
282,
282,
282,
282,
282,

282,
282,
282,
282,
282,
282,
282,
282,
282,
282,
282,
282,

282,
282,
282,
282,

282,
282,
282,
282,

282,
282,
282,
282,

282,
282,

282,
282,
282,
282,
282,

Self:
Self:
Self:
Self:

Self:

Self:
Self:
Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:

Self:
Self:
Self:
Self:
Self:

:SPHERE_COLOR_NONE
:SPHERE_COLOR_NONE
:SPHERE_COLOR_NONE
:SPHERE_COLOR_NONE

:SPHERE_COLOR_NONE

}I
}I
}I
}I

b

b

: SPHERE_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE

}I
}I
}I
}I
}I
i

}I
}I
}I
}I

}I
}I
}I
}I

b
|

}I
I
}I
}I

}I
}I
}I
}

}I
}I
}I
}I

|
|

}I
}I
}I
}I
}I

15

"10mm _1b_06",
"10mm_1b 07",
"10mm_1b_08",
"10mm_1b_09",
"10mm 1b_10",
"10mm_1b 11", 10,
"10mm 1b_ 12", 10, {
/ +— 40mm lateral
"10mm _1b_ 13", 10, {
"10mm 1b_14", 10, {
"10mm 1b_15", 10,
"10mm 1b_ 16", 10,
/ +- 45mm lateral
"10mm 1b_ 17", 10, {
"10mm 1b_18", 10, {
"10mm 1b_19", 10, {
"10mm 1b_ 20", 10, {
"10mm_1b 21", 10, {
{
{

10,
10,
10, {
10, A
10, |

{

"10mm 1b_ 22", 10,
"10mm 1b_23", 10,
"10mm 1b_24", 10, {
/ +— 64.5mm lateral
{ "10mm_1b_25",
{ "10mm_1b_ 26", 10,
// +— 73.9mm lateral
{ "10mm_1b_27", 10, {
{ "10mm _1b_28", 10,
// +- 85.2mm lateral
{ "10mm_1b_29", 10, {
{ "10mm_1b 30", 10, {
{ "10mm_1b_31", 10,
{ "10mm _1b_32", 10,
// Plane 2
// +- 15mm lateral
"10mm 2 01", 10, {
"10mm 202", 10, {
"10mm 2 03", 10, {
"10mm 2 04", 10, {
"10mm 205", 10, {
"10mm _2_06", 10, {
"10mm 207", 10, {
{
{
{
{

B N N S i A VA N Vi N S N

—_

"10mm_2_08", 10,
"10mm_2_09", 10,
"10mm_2_10", 10,
"10mm 211", 10,
"10mm 2_12", 10,
/ +- 45mm lateral
"10mm_2_13", 10,
"10mm 214", 10, {
"10mm 215", 10,
"10mm 2_16", 10,
/ +- 48.7mm lateral
{ "10mm_2_17", 10, {
{ "10mm 2_18", 10,

N e e e N A e e e e e e e e e

15.
-15.
-15.
-15.
-15.
-15.
-15.

40.
40.
{ —40.
{ —40.

45.
45.
—45.
-45.
45.
-45.
45.
—45.

10, { 64.5
{ —64.

3.
{ =73.

85.
85.
{ —85.
{ —85.

15.
15.
-15.
-15.
15.
15.
-15.
-15.
15.
15.
-15.
{ -15.

{ 45.
45.
{ —45.
{ —45.

48.
{ 48.

O O O O O O O O O O o
~ ~ ~ ~ ~ N~ ~

~

~

~

~ 0~

O O O O O O O O
~

~

DN NN
~ N~ N

~

~

~ 0~

~

~ 0~ 0~

~

O O O O O O OO O o oo
~

~

~

o O O O
~

~J
~

29.
29.
29.
29.
29.
29.
29.

29.
29.
29.
29.

29.
29.
29.
29.
29.
29.
29.
29.

29.
29.1

29.
29.

29.
29.
29.
29.

-60.
-60.
—-60.
—-60.
—-60.
-60.
—-60.
-60.
-60.
—-60.
-60.
-60.

—-60.
—-60.
-60.
-60.

—-60.
-60.

~ 0~

~

e e el el e el el
~ <~ ~ =~ ~ <~ ~ =~

~ ~

~

~ 0~ 0~

el el el el e e
N

~

B e e
<

~

~ N N N

~

~ N N N N

O O O O O O O O oo oo
~

~

o O O O
~ N 0~

(@)
~

-85.
45.
65.
85.

—45.

—65.

-85.

15.
-15.
15.
-15.

45.
—45.
45.
—45.
65.
-65.
=73.
3.

-45.
45.

45.
—45.

15.
-15.
15.
-15.

15.
-15.
15.
-15.
45.
—45.
45.
—45.
67.
-67.
67.
-67.

15.
-15.
15.
-15.

48.
—-48.

O O O O N OO NO O DN

O VW O OO o oo

(@)

O O O O

W wwwooooo o oo

o O O O

~

}I
}I
}’
}I
i
}I
}I

}I
}I
}I
}I

b
b
i

}I
}’
}I
}I

}
b

b

}I
}’
}I
i

}’
}I
}I
}I
}I
}’
}’
}I
}I
}I
}I
}’

i
}I
}I
}’

i
i

o O O o O O O O o o o

O O O O O o o o

.820,
.820,
.820,
.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,

0.820,

(@] (@}

O O O O O OO oo o oo o O O O

o O O o

(@]

.820,

.820,
.820,

.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,

.820,
.820,

282,
282,
282,
282,
282,
282,
282,

282,
282,
282,
282,

282,
282,
282,
282,
282,
282,
282,
282,

282,
282,

282,
282,

282,
282,
282,
282,

282,
282,
282,
282,
282,
282,
282,
282,
282,
282,
282,
282,

282,
282,
282,
282,

282,
282,

Self:
Self:
Self:
Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:

Self:
Self:

Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:

: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE

}I
}I
}I
}I
i
}I
}I

}I
}I
}I
}I

|
|
i

}I
}I
}I
}I

}
b

|

}I
}I
}I
I

}I
}I
}I
}I
}
b
}I
}I
}I
}I
}I
}I

i
}I
}I
}I

b
i

16

{ "10mm 2_19", 10, { -48.7,
{ "10mm_2_20", 10, { -48.7,
// +- 67.3mm lateral

{ "10mm_2_21", 10, { 67.3,
{ "10mm_2_22", 10, { 67.3,
{ "10mm_2_23", 10, { —67.3,
{ "10mm_2_24", 10, { -67.3,
// Plane 2b (same as Plane
// +— 15mm lateral

{ "10mm 2b_01", 10, { 15.0,
{ "10mm_2b_02", 10, { 15.0,
{ "10mm_2b_03", 10, { -15.0,
{ "10mm_2b_04", 10, { -15.0,
{ "10mm_2b_ 05", 10, { 15.0,
{ "10mm_2b 06", 10, { 15.0,
{ "10mm_2b_07", 10, { -15.0,
{ "10mm_2b_08", 10, { -15.0,
{ "10mm_2b_09", 10, { 15.0,
{ "10mm_2b_10", 10, { 15.0,
{ "10mm 2b 11", 10, { -15.0,
{ "10mm 2b_12", 10, { -15.0,
// +— 45mm lateral

{ "10mm_2b_13", 10, { 45.0,
{ "10mm 2b_14", 10, { 45.0,
{ "10mm 2b_15", 10, { -45.0,
{ "10mm 2b_16", 10, { -45.0,
// +— 48.7mm lateral

{ "10mm 2b_17", 10, { 48.7,
{ "10mm 2b_18", 10, { 48.7,
{ "10mm 2b_19", 10, { -48.7,
{ "10mm_2b 20", 10, { -48.7,
// +- 67.3mm lateral

{ "10mm_2b_21", 10, { 67.3,
{ "10mm 2b_22", 10, { 67.3,
{ "10mm_2b 23", 10, { -67.3,
{ "10mm_2b 24", 10, { -67.3,
// Plane 3

{ "10mm_3_01", 10, { 28.3,
{ "10mm_3_02", 10, { 28.3,
{ "10mm_3 03", 10, { -28.3,
{ "10mm_3_04", 10, { -28.3,
{ "10mm_3 05", 10, { 0.0,
{ "10mm_3_06", 10, { 0.0,
{ "10mm_3_07", 10, { 25.0,
{ "10mm_3_08", 10, { -25.0,
{ "10mm_3_09", 10, { 0.0,
// Plane 3b

{ "10mm_3b_01", 10, { 28.3,
{ "10mm_3b_02", 10, { 28.3,
{ "10mm_3b_03", 10, { -28.3,
{ "10mm_3b_04", 10, { -28.3,
{ "10mm_3b_ 05", 10, { 0.0,
{ "10mm_3b_06", 10, { 0.0,
{ "10mm_3b_07", 10, { 25.0,

—-60.
—60.

-60.
—-60.
-60.
-60.
2 but at y=+59.1)

59.
59.
59.
59.
59.
59.
59.
59.
59.
59.
59.
59.

59.
59.
59.
59.

59.
59.
59.
59.

59.
59.
59.
59.

-82.
-82.
-82.
-82.
—88.
—88.
—88.
—88.
-89.

81.
81.
81.
81.
87.
87.
87.

0, 48.7
0, —-48.7
0, 15.0
0, -15.0
0, 15.0
0, -15.0

~ N 0~ 0~

~

~ N N N~ 0~

el el e el el e e el e e =
<

~

~ 0~ 0~

~

~ 0~ 0~

U O O O o NN
<

~

~ 0~

~

~

~

N DN DN DD D
~

~

15.0
-15.0
15.0
-15.0
45.0
-45.0
45.0
-45.0
67.3
-67.3
67.3
-67.3

15.0
-15.0
15.0
-15.0

48.7
—48.7
48.7
—48.7

15.0
-15.0
15.0
-15.0

|
N DN

O O O U1 U1 O O o

N
O O OO O W Wwww

| |
NN NN

|
NN

N
u

o O 0
O OO W www

[@RNE)]

b

b
i
b

}I
}I
}’
}’
}I
}I
}I
}I
}’

i
}I
}I
}’
}I
}I
}I

o O

O O O O OO oo oo oo o O O o

o O O O O O O O

O O O O

O O O O O o o oo

O O O O o o o

.820,
.820,

.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,
.820,

.820,
.820,
.820,
.820,
.820,
.820,
.820,

282,
282,

282,
282,
282,
282,

282,
282,
282,
282,
282,
282,
282,
282,
282,
282,
282,
282,

282,
282,
282,
282,

282,
282,
282,
282,

282,
282,
282,
282,

282,
282,
282,
282,
282,
282,
282,
282,
282,

282,
282,
282,
282,
282,
282,
282,

Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:
Self:

Self:
Self:
Self:
Self:
Self:
Self:
Self:

: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE

: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE,_COLOR_NONE
: SPHERE_COLOR_NONE

b
}

}I
i
}I
}I

}I
}I
}I
}I
}I
}I
i

}I
}I
}I
}I

}I
}I
}I
}I

}I
}I
}I
}I

}I
}I
}I
}I

}I
}
b
}I
}I
}I
}I
}I
}I

i
}I
}I
}I
}I
}I
}I

17

{ "10mm_3b_08", 10, { -25.0

{ "10mm_3b_09", 10, { 0.0, 88.6,
//

// END LICENSING EXCEPTION

//

0.820, 282, Self::SPHERE_COLOR NONE 1},
0.820, 282, Self::SPHERE_COLOR NONE }

	Introduction
	What You Need and Where You Get It
	Structural Imaging Phantom
	CMTK

	Step-by-Step
	Imaging
	DICOM Image Stacking
	Phantom Detection
	Fault-Tolerant Phantom Detection
	Create Unwarping Transformation
	Correction With and Without Unwarping

	Concluding Remarks
	Example Data
	Example XML Phantom File
	Phantom Geometry

