
Matlab Tool: Functional Regression Analysis
of DTI tract Statistics

1 Introduction

1.1 FRATS summary

Diffusion tensor imaging (DTI) provides important information on the structure of white
matter fiber bundles as well as detailed tissue properties along these fiber bundles in vivo. A
functional regression framework, called FRATS and implemented by Matlab, was presented
for the analysis of multiple diffusion properties along fiber bundle as functions in an infinite
dimensional space and their association with a set of covariates of interest, such as age, diag-
nostic status and gender, in real applications. The functional regression framework consists of
four integrated components: (1) the local polynomial kernel method for smoothing multiple
diffusion properties along individual fiber bundles, (2) a functional linear model for charac-
terizing the association between fiber bundle diffusion properties and a set of covariates, (3) a
global test statistic for testing hypotheses of interest, and (4) a resampling method for approx-
imating the p-value of the global test statistic. The resulting analysis pipeline can be used for
understanding normal brain development, the neural bases of neuropsychiatric disorders, and
the joint effects of environmental and genetic factors on white matter fiber bundles.

1.2 Motivation

Diffusion Tensor Imaging (DTI), which can track the effective diffusion of water in the hu-
man brain in vivo, has been widely used to map the structure and orientation of the white
matter fiber tracts of the brain (Basser et al., 1994b,a). In the current literature, three major
approaches to the group analysis of diffusion imaging data are region-of-interest (ROI) anal-
ysis, voxel based analysis, and fiber tract based analysis (Smith et al., 2006; O’Donnell et al.,
2009; Snook et al., 2007). The ROI analysis used in some neuroimaging studies (Bonekam
et al., 2008; Gilmore et al., 2008) primarily suffers from the difficulty in identifying meaningful
ROIs. Voxel based analysis is used more commonly than ROI analysis in neuroimaging studies
(Chen et al., 2009; Focke et al., 2008; Camara et al., 2007; Snook et al., 2005). The major
drawbacks of voxel based analysis include the issues of alignment quality and the arbitrary
choice of smoothing extent (Hecke et al., 2009; Ashburner and Friston, 2000; Smith et al.,
2006; Jones et al., 2005). With the drawbacks mentioned of the ROI and voxel based analy-
sis, there is a growing interest in the DTI literature in developing fiber tract based analysis
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of diffusion properties (Smith et al., 2006; O’Donnell et al., 2009; Yushkevich et al., 2008;
Goodlett et al., 2009; Zhu et al., 2010). Statistically, diffusion properties along fiber bundles
are functional data and its analysis requires advanced functional data analysis methods (Li
and Hsing, 2010; Yao and Lee, 2006; Hall et al., 2006; Ramsay and Silverman, 2005, 2002).
Functional data analysis methods for the statistical analysis of diffusion properties along fiber
tracts, a “smoothing first, then estimation” procedure, was also developed (Goodlett et al.,
2009). Their method is limited to a univariate diffusion property and cannot control for other
covariates of interest, such as age, gender and behavioral variables. Moreover, the permuta-
tion test used there ignores substantial noise in the original data and can lead to misleading
results.

What these three methods do not account for is the comparison of fiber bundle diffusion
properties across groups and the development of fiber bundle diffusion properties along time,
while controlling for other covariates of interest, such as gender (Chen et al., 2009; Bonekam
et al., 2008; Smith et al., 2006; Focke et al., 2008; Camara et al., 2007; Snook et al., 2005).
Making these comparisons requires a regression modeling framework for the analysis of fiber
bundle diffusion properties and a set of covariates of interest, such as age, diagnostic status
and gender. This tool presents a functional regression analysis of DTI tract statistics, called
FRATS, for modeling the relationship between fiber bundle diffusion properties and covariates
of interest.

1.3 FRATS description

Compared with (Goodlett et al., 2009) and other existing literature, literature, there are
four methodological contributions in this paper. First, the local polynomial kernel method
is used to regularize multiple diffusion properties along individual fiber bundles. Second,
a functional linear model is developed to characterize the association between fiber bundle
diffusion properties and any covariate of interest. Third, a global test statistic is proposed
for testing hypothesis of interest. Fourth, a resampling method is developed for estimating
the p-value of the global test statistic. A schematic overview of FRACTS is given in Figure
1. We describe each of these components briefly below. Detailed description can be found in
Zhu et al. (2010).

1. Nonparametric Model

For the i-th subject, we consider a m × 1 vector of diffusion properties, denoted by yi,j =
(yij,1, · · · , yij,m)T , and its associated arc length sj for the j-th location grid point on the fiber
bundle for j = 1, · · · , L0 and i = 1, · · · , n, where L0 and n denote the numbers of grid points
and subjects, respectively. The nonparametric model is given by

yi,j = fi(sj) + εi,j, (1)

where fi(s) = (fi,1(s), · · · , fi,m(s))T is an m × 1 vector of continuous functions with second-
order continuous derivative, E[yi,j|fi(sj)] = fi(sj), and Cov[yi,j|fi(sj)] = Σ(sj). Using Taylor’s
expansion, we can expand fi(sj) at s to obtain

fi(sj) = fi(s) + ḟi(s)(sj − s) = Aizj, (2)
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Figure 1: A schematic overview of FRATS: a nonparametric model for regularizing individual
tracts, a functional linear model, a global test statistic for hypothesis testing, and a resampling
method for estimating the p-value of the global test statistic.

where zj = (1, sj − s)T and Ai = [fi(s) ḟi(s)] is an m× 2 matrix with ḟi(s) = dfi(s)/ds. We
develop an algorithm to estimate Ai as follows.

Step (1.1). Step (1.1) is to construct an initial estimate of fi(s) for each i. Let ai;k be
the k-th row of Ai and K(·) be a kernel function. For each k and a fixed bandwidth hk, we
estimate ai;k by minimizing an objective function given by

L0∑
j=1

(yij,k − aTi;kzj)
2Khk(sj − s), (3)

where Khk(·) = K(·/hk)/hk is a rescaled kernel function. With some calculation, it can be
shown that

âi;k = [

L0∑
j=1

zjKhk(sj − s)zTj ]−1

L0∑
j=1

Khk(sj − s)zjyij,k. (4)

Let e1,2 = (1, 0)T . Then,

f̂i,k(s) = eT1,2âi;k =

L0∑
j=1

K̃0
hk

(sj − s, s)yij,k, (5)
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where K̃0
hk

(·, ·) are the empirical equivalent kernels Fan and Gijbels (1996). Thus, f̂i,k =

(f̂i,k(s1), · · · , f̂i,k(sL0))
T = Si,kyi:,k, where yi:,k = (yi1,k, · · · , yiL0,k)

T and Si,k is the smoother
matrix for the k-th measurement of the i-th subject. For each k, we pool the data from all n
subjects and select the optimal bandwidth hk, denoted by ĥ

(1)
k,opt, by minimizing the generalized

cross-validation score given by

GCVk(hk) = (n)−1

n∑
i=1

L0∑
j=1

[yij,k − f̂i,k(sj)]2

1− L−1
0 tr(Si,k)

. (6)

Based on the optimal ĥ
(1)
k,opt, we can estimate f̂i,k(s) for all i.

Step (1.2). Step (1.2) is to construct an estimator of the covariance matrix Σ(sj) at sj.
Specifically, we consider the unbiased sample covariance matrix at sj given by

Σ̂(sj) = (n−m)−1

n∑
i=1

[yi,j − f̂i(sj)]
⊗2, (7)

where f̂i(s) = (f̂i,1(s), · · · , f̂i,m(s))T and a⊗2 = aaT for any vector a. It can be shown that

Σ̂(sj) converges to the true Σ(sj) in probability as both n and L0 go to infinity.
Step (1.3). Step (1.3) is to compute an adaptive estimator of fi(s) for all i using the

initial results from Steps (1.1) and (1.2). For all k and a fixed bandwidth h, we estimate Ai

by minimizing an objective function given by

L0∑
j=1

(yij −Aizj)
T Σ̂(sj)

−1(yij −Aizj)Kh(sj − s). (8)

Let Zj = block diagonal(zTj , z
T
j , · · · , zTj ) be an m× 2m matrix and Bi = (aTi;1, · · · , aTi;m)T . It

can be shown that

B̂i = [

L0∑
j=1

Kh(sj − s)ZTj Σ̂(sj)
−1Zj]

−1

L0∑
j=1

Kh(sj − s)ZTj Σ̂(sj)
−1yij, (9)

which leads to a new estimator of fi,k(s), denoted by f̂i,k(s)
sec for each i and k. Let S̃i,k

be the smoother matrix for the k-th measurement of the i-th subject such that f̂ seci,k =

(f̂i,k(s1)
sec, · · · , f̂i,k(sL0)

sec)T = S̃i,kyi:,k. We pool the data from all n subjects and m measure-

ments and select the optimal bandwidth h, denoted by ĥopt, by minimizing the generalized
cross-validation score given by

GCV(h) = n−1

n∑
i=1

L0∑
j=1

[yij − f̂i(sj)
sec]T Σ̂(sj)

−1[yij − f̂i(sj)
sec]

1− (mL0)−1
∑m

k=1 tr(S̃i,k)
, (10)

where f̂i(s)
sec = (f̂i,1(s)

sec, · · · , f̂i,m(s)sec)T . Based on the optimal ĥopt, we can estimate

f̂i,k(s)
sec for all i and k. Similar to the arguments in Welsh and Yee (2006), it can be shown
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that when Σ(s) varies across s, f̂i,k(s)
sec based on the optimal ĥopt is more accurate than

f̂i,k(s) obtained from Step (1.1).
Step (1.4). Step (1.4) is to estimate the mean function f(s) and the covariance function

Γ(s, t) of fi(s). Specifically, following Zhang and Chen (2007a); Ramsay and Silverman (2005),
we can estimate f(s) and Γ(s, t) by using their empirical counterparts of the estimated f̂i(s)

sec

as

f̂(s) = n−1

n∑
i=1

f̂i(s)
sec and (11)

Γ̂(s, t) = n−1

n∑
i=1

[f̂i(s)
sec − f̂(s)][f̂i(t)

sec − f̂(t)]T . (12)

The diagonal of Γ(s, s) reflects the variance of fi(s) at the location s.

2. Functional Linear Model

We develop a functional linear model to characterize the relationship between all diffusion
properties along fiber tracts and a set of covariates of interest, such as age, group, and gender.
We assume that

fi(s) = B(s)xi + ηi(s), i = 1, · · · , n, (13)

where B(s) is a m × p matrix of functions of s, xi is a p × 1 vector of covariates of interest,
and ηi(s) satisfies E[ηi(s)|xi] = 0 and Cov[ηi(s), ηi(t)|xi] = Γη(s, t). B(s) characterizes the
association between fiber bundle diffusion properties and the covariates of interest xi. We
develop an estimation algorithm to estimate B(s) and Γη(s, t) as follows.

Step (2.1). Step (2.1) is to estimate B(s). Let Bk(s) be the kth row of B(s). Then, we
calculate the least-squares estimator of B(s), denoted by B̂(s), by minimizing an objective
function given by

n∑
i=1

[f̂i(s)
sec −B(s)xi]

T [f̂i(s)
sec −B(s)xi]. (14)

Specifically, the least-squares estimator of Bk(s), denoted by B̂k(s), is given by

B̂k(s)
T = (

n∑
i=1

x⊗2
i )−1

n∑
i=1

xif̂i,k(s)
sec, for k = 1, · · · ,m. (15)

Step (2.2). Step (2.2) is to estimate Γη(s, t). Let η̂i(s) = f̂i(s)
sec − B̂(s)xi. Then, the

covariance matrix Γη(s, t) can be estimated by

Γ̂η(s, t) = (n−m)−1

n∑
i=1

η̂i(s)η̂i(t)
T . (16)

The covariance matrix Γη(s, t) characterizes the variation of ηi(s), which is different from
Γ(s, t).
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3. Global Test Statistic

We develop a global test statistic to test linear hypotheses of B(s) in order to answer various
scientific questions involving a comparison of fiber bundle diffusion properties along fiber
bundles across two (or more) diagnostic groups and the development of fiber bundle diffusion
properties along time. We can formulate these questions as linear hypotheses of B(s) as
follows:

H0 : Cvec(B(s)) = b0(s) for all s vs. H1 : Cvec(B(s)) 6= b0(s), (17)

where C is a r ×mp matrix of full row rank and b0(s) is a given r × 1 vector of functions.
We test the null hypothesis H0 : Cvec(B(s)) = b0(s) using a global test statistic Sn defined

by

Sn = n

∫ F0

0

d(s)T [C(Γ̂η(s, s)⊗ Ω̂−1
X )CT ]−1d(s)ds, (18)

where Ω̂X = n−1
∑n

i=1 x
⊗2
i , d(s) = Cvec(B̂(s)) − b0(s) and F0 is the whole arc length of a

specific fiber bundle. In order to use Sn as a test statistic, we need an asymptotic result.
Specifically, similar to the arguments in Zhang and Chen (2007a), we can show that under
some conditions and H0,

√
nd(s) and Sn converge weakly to N(0,C(Γη(s, s)⊗ Ω−1

X )CT ) and
a weighted χ2 distribution, respectively, as n→∞.

In addition, at a given grid point sj on a specific tract, we can also test the local null
hypothesis H0(sj) : Cvec(B(sj)) = b0(sj) using a local test statistic Sn(sj) defined by

Sn(sj) = nd(sj)
T [C(Γ̂η(sj, sj)⊗ Ω̂−1

X )CT ]−1d(sj). (19)

Under some conditions andH0(sj),
√
nd(sj) and Sn(sj) converge weakly toN(0,C(Γη(sj, sj)⊗

Ω−1
X )CT ) and a weighted χ2 distribution with r degrees of freedom, respectively, as n→∞.

4. Resampling Method

We develop a resampling method (or wild bootstrap method) to approximate the p-value of
Sn (Zhu et al., 2007; Lin, 2005). The resampling method has four key steps as follows.

Step (3.1): Fit the functional linear model f̂i(s) = B(s)xi + ηi(s), i = 1, · · · , n, under
the null hypothesis H0, which yields B̂∗(s) and η̂∗i (s) = f̂i(s)− B̂∗(s)xi.

Step (3.2): Generate a random sample τ
(g)
i from a N(0, 1) generator for i = 1, · · · , n and

then construct f̂i(s)
(g) = B̂∗(s)xi + τ

(g)
i η̂∗i (s). Then, based on f̂i(s)

(g), we calculate

B̂k(s)
(g)T = (

n∑
i=1

x⊗2
i )−1

n∑
i=1

xif̂i,k(s)
(g), k = 1, · · · ,m, (20)

where B̂k(s)
(g)T and f̂i,k(s)

(g) are, respectively, the kth row of B̂(s)(g) and f̂i(s)
(g). Finally, let

d(s)(g) = Cvec(B̂(s)(g))− b0(s), we compute

S(g)
n = n

∫ F0

0

d(s)(g)T [C(Γ̂η(s, s)⊗ Ω̂−1
X )CT ]−1d(s)(g)ds, (21)

Sn(sj)
(g) = nd(sj)

(g)T [C(Γ̂η(sj, sj)⊗ Ω̂−1
X )CT ]−1d(sj)

(g) for j = 1, · · · , L0.
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Step (3.3): Repeat Step (3.2) G times to obtain {S(g)
n,max = max1≤j≤L0 Sn(sj)

(g) : g =
1, · · · , G} and calculate

p(sj) = G−1

G∑
g=1

1(S(g)
n,max ≥ Sn(sj))

for each sj. The p(sj) is the corrected p-value at the location sj.

Step (3.4): Repeat Step (3.2) G times to obtain {S(g)
n : g = 1, · · · , G} and calculate

p = G−1

G∑
g=1

1(S(g)
n ≥ Sn).

If p is smaller than a pre-specified value α, say 0.05, then we reject the null hypothesis H0.

2 Matlab functions

We implemented the FRACTS pipeline in Matlab. The following is the description of the
functions in FRACTS Matlab tool. We first give an overview of the Matlab function and then
explain each of the function in terms of function name, input, output, the function goal, and
remarks if desired. Examples and results will be given in the next section.

2.1 Function overview

fiberSTATHT1 read: read raw data and generate, arc length, standardized design and re-
sponse matrices, and related dimension parameters.

fiberSTATHT2 MVreg: read arc length, standardized design and response matrices, related
dimension parameters, and design matrices of a hypothesis testing; using wald-test and
mvregress function to generate the test statistics, p-values, and some other statistics by
pooling data from all grid points.

myFDR: read a vector of p-values and False Discovery Rate level; and generate p-value thresh-
old based on independence or positive dependence and Nonparametric p-value threshold.

fiberSTATHT3 1 Local: it is to implement Zhang and Chen (2007b) method to each of the
fiber bundle diffusion properties.

chi2D: it is to implement Zhang and Chen (2007b) method to hypothesis tests about func-
tional data.

fdaflm: it is to implement Zhang and Chen (2007b) method to fit a functional linear model
using local polynomial kernel (LPK) with plot options and other parameter estimations.

fdafit: it is to implement Zhang and Chen (2007b) method to fit a functional linear model
using local polynomial kernel (LPK) with plot options.

7



lpsfit: it is to implement a local polynomial kernel (LPK) fit.

fiberSTATHT3 LocalLM: it is to implement Zhang and Chen (2007b) method to each of the
fiber bundle diffusion properties and generate various p values.

fiberSTATHT3 ZHCHann: it is to implement Zhang and Chen (2007b) method to each of
the fiber bundle diffusion properties and generate test statistics and its corresponding p
value.

fiberSTATHT4 LocalLM: it is to implement Zhu et al. (2010) method to all the fiber bundle
diffusion properties and generate the estimation of functional coefficients, global test
statistics and their p values.

fiberSTATHT5 multiLPSfit: it is to implement Zhu et al. (2010) method step (1.3) in
nonparametric model and generate fitted curves and GCV value.

fiberSTATHT6 LocalLM: it is to implement Zhu et al. (2010) method to all the fiber bundle
diffusion properties and generate the estimation of functional coefficients, global test
statistics and their p values given smoothed curves.

fiberSTATHT7plot: it is to implement Zhu et al. (2010) method to plot related graphs.

2.2 Function description

fiberSTATHT1 read

Function [NoSetup, arclength, Xdesign, Ydesign, scalediffusion]=fiberSTATHT1 read(tractdata,
designdata, diffusionFiles, nofeatures, featuresname)

Input tractData: the text file containing (x, y, z) coordinates of all locations on a given
fiber tract. The data set should start from one end to the other end.
tractData is a L0× 3 matrix, where L0 denotes the number of locations. 3 denotes
the three coordinates.

designData: the text file containing covariates of interest. Please always include the
intercept in the first column. designData is a n × p matrix, where n denotes the
number of subjects and p denotes the number of covariates.

diffusionFiles: a m × 1 cell containing the names of all fiber diffusion properties
files. Each fiber bundle diffusion properties should contain a L0 × n matrix. Rows
correspond to the columns in tractData, while columns correspond to the columns
in designData.

nofeatures: the number of diffusion properties, denoted by m.

featurenames: a m× 1 cell of property names.

Output NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number
of grid points, p− 1 is the number of covariates and m is the number of features.
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arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

scalediffusion: a m× 1 vector of scales for each properties.

Remark to avoid unnecessary errors, please use this function to preprocess the raw data
before you go to the nonparametric model.

fiberSTATHT2 MVreg

Function [rawpvalue, pvalue, waldtest, CorrFiber, Cpvalue, Npvalue]=fiberSTATHT2 MVreg(NoSetup,
arclength, Xdesign, Ydesign, Cdesign, B0vector)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number of
grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

Cdesign: a k×mp matrix for characterizing the k linear constraints among mp param-
eters.

B0vector: a k × 1 vector for hypothesis testing.

Output rawpvalue: a L0× 1 vector of uncorrect p values.

pvalue: a L0× 1 vector of sorted uncorrect p values.

waldtest: a L0×m ∗ (m− 1)/2 matrix of correlations.

CorrFiber: a L0× 1 vector of Wald test values.

Cpvalue: a threshold for FDR.

Npvalue: a threshold method nonparametric method.

Remark You need myFDR.m for correcting for p values using False Discovery Rate.

myFDR

Function [pID, pN]=myFDR(p,q)

Input p: a vector of p-values.

q: False Discovery Rate level.

Output pID: p-value threshold based on independence or positive dependence.

pN: Nonparametric p-value threshold.

Remark Based on FDR.m (1.4 Tom Nichols 02/07/02).
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fiberSTATHT3 1 Local:

Function [pstat, efitBeta, efitYdata]=fiberSTATHT3 1 Local(NoSetup, arclength, Xdesign,
Ydesign, Cdesign, B0vector)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number of
grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

Cdesign: a k×mp matrix for characterizing the k linear constraints among mp param-
eters.

B0vector: a k × L0 vector for hypothesis testing.

Output pstat: a m× 1 vector of p values for whole curve.

efitBeta: a m× L0 × p matrix of estimators.

efitYdata: a m× L0× matrix of curves.

Remark You need myFDR.m for correcting for p values using False Discovery Rate and
fdaflm.m for functional linear regression using local polynomial kernel.

chi2D

Function [pstat, pdf]=chi2D(stat, dd, params, q)

Input stat: stat=summ
r=1drAr, Ar ∼ χ2

q.

dd: dd=[d1,d2,...,dm].

params: params=[method,N,indfig]; method=0 Chisq approximation and 1 Simulation;
indfig=1, plot the null density and 0 otherwise.

q: degrees of freedom of Ar, assume the same df for all Ar.

Output pstat: pstat=[stat,pvalue,df,M,Delta,alpha,beta].

pdf: density function.

Remark code wrote by Jin-Ting Zhang and need gpkde.m and related functions (Marron,
1996).

fdaflm

Function [efit, vfit, yfit, hgcv, vhgcv, Sig2]=fdaflm(data, params, xfit, labstr)

Input data: data=[subj, time, y, x]; a N × (3 + p) matrix with p=# of the covariates.
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params: params=[h, indfig, korder]; h-bandwidth; indfig=0 no plot and 1 plot; korder
is the order of the polynomial.

xfit: a design matrix at which response is to be fitted; can be empty.

labstr: labels for x and y.

Output efit: efit=[xfit, eta, esig]; eta is mean curve and esig is its standard deviation.

vfit: vfit=[vfit1,vfit2,...,vfitn]; vfit is the error for each curve.

yfit: yfit=[f1,f2,...,fn] is the estimates of each curve.

hgcv: hgcv=[h,gcv] are the bandwidth candidates and their GCVs.

vhgcv: vhgcv=[vh,gcv] are the optimal bandwidth and its GCV.

Sig2: variance of yfit.

Remark code wrote by Jin-Ting Zhang and you need fdafit.m function to estimate parame-
ters.

fdafit

Function [efit, yfit, hgcv, vhgcv]=fdafit(data, params, xfit, labstr)

Input data: data=[subj, time, y, x]; a N × (3 + p) matrix with p=# of the covariates.

params: params=[h, indfig, korder]; h-bandwidth; indfig=0 no plot and 1 plot; korder
is the order of the polynomial.

xfit: a design matrix at which response is to be fitted; can be empty.

labstr: labels for x and y.

Output efit: efit=[xfit, eta, esig]; eta is mean curve and esig is its standard deviation.

yfit: yfit=[f1,f2,...,fn] is the estimates of each curve.

hgcv: hgcv=[h,gcv] are the bandwidth candidates and their GCVs.

vhgcv: vhgcv=[vh,gcv] are the optimal bandwidth and its GCV.

Remark code wrote by Jin-Ting Zhang and you need lpsfit.m function to estimate parame-
ters.

lpsfit

Function [fits, hgcv]=lpsfit(data, params, xfit, kstr)

Input data: data=[subj, time, y, x]; a N × (3 + p) matrix with p=# of the covariates.

params: params=[h, indfig, korder]; h-bandwidth; indfig=0 no plot and 1 plot; korder
is the order of the polynomial.

xfit: a design matrix at which response is to be fitted; can be empty.
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kstr: kernel function.

Output fits: fits=[xfit, yfit, ysig]; yfit=fitted values at xfit.

hgcv: hgcv=[h,gcv] are the optimal bandwidth and its GCV.

Remark code wrote by Jin-Ting Zhang.

fiberSTATHT3 LocalLM:

Function [pvalue, Cpvalue, Npvalue]=fiberSTATHT3 LocalLM(NoSetup, arclength, Xde-
sign, Ydesign, Cdesign, B0matrix)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number of
grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

Cdesign: a k×mp matrix for characterizing the k linear constraints among mp param-
eters.

B0vector: a k × L0 vector for hypothesis testing.

Output pvalue: a L0× 1 vector of sorted uncorrect p values.

Cpvalue: a threshold for FDR.

Npvalue: a threshold method nonparametric method.

Remark You need myFDR.m for correcting for p values using False Discovery Rate and
fdaflm.m for functional linear regression using local polynomial kernel.

fiberSTATHT3 ZHCHann:

Function [pstat]=fiberSTATHT3 ZHCHann(NoSetup, arclength, Xdesign, Ydesign, Cdesign,
B0matrix)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number of
grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

Cdesign: a k×mp matrix for characterizing the k linear constraints among mp param-
eters.

B0vector: a k × L0 vector for hypothesis testing.

Output pstat: a vector of test statistic and associated p-value.
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Remark You need myFDR.m for correcting for p values using False Discovery Rate and
fdaflm.m for functional linear regression using local polynomial kernel.

fiberSTATHT4 LocalLM:

Function [eta, pstat, GTstat]=fiberSTATHT4 LocalLM(NoSetup, arclength, Xdesign, Yde-
sign, Cdesign, B0matrix)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number of
grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

Cdesign: a k×mp matrix for characterizing the k linear constraints among mp param-
eters.

B0vector: a k × L0 vector for hypothesis testing.

Output eta: a m× L0× p array of estimated functional coefficients.

pstat: a vector of test statistic and associated p value.

GTstat: a vector of simulated global statistics.

Remark You need fiberSTATHT5 multiLPSfit.m for nonparametric fitting and fiberSTATHT6 LocalLM.m
for resampling method.

fiberSTATHT5 multiLPSfit:

Function [FitYdesign, GCVnum]=fiberSTATHT5 multiLPSfit(NoSetup, Kmat, IcovYfit, Yde-
sign, Zxcell)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number of
grid points, p− 1 is the number of covariates and m is the number of features.

Kmat: a L0 × L0 matrix related to kernel function.

IcovYfit: a n× p normalized design matrix.

Ydesign: a n× L0×m matrix.

Zxcell: a L0 vector of cells each Zxcelli is an array of L0 × m × 2m related to arc
length.

Output eta: a m× L0× p array of estimated functional coefficients.

GTstat0: a vector of global statistics.

Remark this function is to implement step (1.3) in nonparametric model.
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fiberSTATHT6 LocalLM:

Function [eta, GTstat0]=fiberSTATHT6 FLM(NoSetup, arclength, Xdesign, FitYdesign, Cde-
sign, B0matrix, FigYes)

Input NoSetup: a column vector of [n, L0, p,m], where n is sample size, L0 is the number of
grid points, p− 1 is the number of covariates and m is the number of features.

arclength: a L0 × 1 column vector of the arclength from one end to the other end.

Xdesign: a n× p normalized design matrix.

FitYdesign: a n× L0×m matrix.

Cdesign: a k×mp matrix for characterizing the k linear constraints among mp param-
eters.

B0vector: a k × L0 vector for hypothesis testing.

FigYes: a scalar representing ¿0 for plot figure.

Output eta: a m× L0× p array of estimated functional coefficients.

pstat: a vector of test statistic and associated p value.

GTstat: a vector of simulated global statistics.

Remark this function is used for resampling method to simulate the p value.

3 Example

3.1 Data set and Model

We applied FRATS to the joint analysis of FA and MD values along the splenium tract as
follows (Figure 2). We fitted the functional linear model (13) to these smoothed FA and MD
functions from all 128 subjects, in which xi = (1, gi,Gagei, agei)

T and m = 2, that is

(FAi(sj),MDi(sj))
T = (fi,1(sj), fi,2(sj))

T + εi,j, (22)

fi,1(s) = β11(s) + β12(s)× gi + β13(s)×Gagei + β14(s)× agei + ηi1(s),

fi,2(s) = β21(s) + β22(s)× gi + β23(s)×Gagei + β24(s)× agei + ηi2(s), (23)

where ηi(s) = (ηi1(s), ηi2(s))
T is a 2 × 1 vector of Gaussian process with zero mean and

covariance matrix Γη(s, t) and εi,j is a 2 × 1 vector of Gaussian random variables with zero
mean and covariance matrix Σ(sj). Then we used equation (15) to estimate the function of

regression coefficient vector B̂(s). Secondly, we constructed the global test statistic Sn to
test the effects of all the three covariates for FA alone, MD alone, and joint FA and MD,
respectively, and performed hypothesis testing on the whole splenium tract. For example, to
test the effect of gender we have design matrices

C =

(
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

)
and b0(s) ≡

(
0
0

)
for all s.

The p-value of Sn was approximated using the resampling method with G = 10, 000. For more
examples on simulation and real data, see Zhu et al. (2010).

14



Figure 2: FA and MD along the splenium tract

3.2 Code and results

There are three data sets we need to import, namely, tractdata, designdata, diffusionFiles.
The data set tractdata contains (x, y, z) coordinates of all locations on a given fiber tract.
The data set should start from one end to the other end. tractData is a L0×3 matrix, where
L0 = 22 denotes the number of locations. 3 denotes the three coordinates. The following
shows the first 4 rows of tractData,
-21 0 0

-20 0 0

-19 0 0

-18 0 0

· · ·
the data set designdata contains covariates of interest. We always need to 1include the in-
tercept in the first column. designData is a n × p matrix, where n denotes the number of
subjects and p = 4 denotes the number of covariates, as we have intercept, gender, age and
gage. Each covariate is listed in one column. The following shows the first 4 rows, where the
columns are, respectively, intercept, gender, flu and age.
1 1 276 375

1 0 283 381

1 1 275 378

1 1 280 366

· · ·
The data set diffusionFiles is a m(= 2) × 1 cell containing the names of all fiber diffu-
sion properties files. Each fiber bundle diffusion properties should contain a L0 × n matrix.
Rows correspond to the columns in tractData, while columns correspond to the columns in
designData. In particular, we use
diffusionFiles=cell(2,1);

to define the cell structure. We then specify the first cell diffusionFiles{1} as FA values
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and the second diffusionFiles{2} as MD values. Both are n× L0 matrices. The following
are the first 4 rows of diffusionFiles{1}.
0.3286 0.2782 0.2172 0.2095 0.2939 0.1450 · · ·
0.2342 0.2104 0.2800 0.2621 0.2256 0.2578 · · ·
0.2954 0.2066 0.2514 0.3040 0.2378 0.2897 · · ·
0.3411 0.2922 0.3336 0.2956 0.2952 0.3268 · · ·
· · ·

Figure 3: Results from the analysis of FA and MD on the splenium tract: reconstructed curves
f̂i(s)

sec for FA in panel (a) and MD in panel (b); (c) estimated correlation between FA and
MD along the tract; estimated covariance matrices Γ̂(s, t) for FA in panel (d) and MD in panel
(e); (f) estimated regression coefficient functions for FA: β̂11(s) for intercept (blue), β̂12(s) for
gender (red), β̂13(s) for gestational age (green), and β̂14(s) for age (black).

After load covariates, response and arc length data, we use fiberSTATHT1 read to transfer
data into the format we want.
[NoSetup, arclength, Xdesign, Ydesign]

=fiberSTATHT1 read(tractdata, designdata, diffusionFiles, nofeatures).

We then use function fiberSTATHT4 LocalLM to estimate the parameters, see Figure 3.2.
[eta, pstat, GTstat]

=fiberSTATHT4 LocalLM(NoSetup, arclength, Xdesign, Ydesign, Cdesign,
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Figure 4: Results from the analysis of FA and MD on the splenium tract: the − log10(p) values
of test statistics Sn(sj) for testing gender effect in panel (a), gestational age effect in panel
(b), and age effect in panel (c) on FA; the − log10(p) values of test statistics Sn(sj) for testing
gender effect in panel (d), gestational age effect in panel (e), and age effect in panel (f) on
MD.

B0matrix).

We can also find the local p-values (see Figure 3.2.) by
Lpvals=1-chi2cdf(pstat,m).

Function fiberSTATHT7plot provides some useful example of plotting graphs.

4 FRATS: graphical user interface (GUI)

To make it easily accessible, we developed a Graphical User Interface (GUI) to pack the code.
As shown in Figure 5, there are 4 button groups, which are supposed to be executed in order.
The 4 groups are s Load Raw Data, Basic Plots, Load Test Data, and P-value Plots. There
are 3 raw data sets, namely, tract data, design data and diffusion data. The test data sets
include test design matrix and null hypothesis vector. All data sets must be in .mat. The
package includes a sample matlab code pre_address_data.m on how to set up data. After
loading all raw data, GUI will transfer the raw data and estimate the coefficients. Then you
can plot the raw tract data or the coefficient functions by pushing the corresponding buttons.
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If you want to do a test, you need to load the test design data. There are two types of test.
One is to test individually and the other one is test all the diffusion properties together. Once
you loaded the test design data, GUI will display what test type you requested. The test
calculation may take a while. After matlab finishes the computation, GUI will report the
global test statistics and p-values. You also have the option to plot the local p-values.

Figure 5: FRATS GUI
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