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Abstract— Accurate segmentation of different brain tissues 

is of much importance in magnetic resonance imaging.  This 

paper presents a comparison of the existing segmentation 

algorithms that are deployed in the neuroimaging community 

as part of two widely used software packages. The results 

obtained in this comparison can be used to select the 

appropriate segmentation algorithm for the neuroimaging 

application of interest. In addition to the entire brain area, a 

comparison is carried out for the subcortical region of the 

brain in terms of its gray matter composition. 

I. INTRODUCTION 

 HE field of medical imaging has evolved to the point  

 that a wide variety of sophisticated tools is now 

available to image the human brain in vivo. In particular, 

the increase in the spatial resolution of magnetic resonance 

imaging (MRI) and functional MRI (fMRI) has been 

allowing physicians and scientists to better utilize the 

functional imaging of different parts of the brain towards 

prescribing effective therapies.  

In applications where functional localization is of 

importance, knowing the precise location of a particular 

brain structure is a prerequisite to successful treatment. For 

instance, analysis prior to brain surgery is done by experts 

who examine images of the brain and perform a manual 

segmentation of the structure of interest. However, there 

exists some disagreement and variability between different 

independent experts who perform manual segmentation on 

such images [1], indicating that there is still room for 

improvement in the segmentation process. 

To address inter-expert variability, various algorithms 

have been introduced in the image processing literature to 

handle MR image segmentation. A review of such 

algorithms has been compared by Liew et al [2]. The 

challenge in tissue segmentation now lies in having a robust 

classification approach based on image intensity values 

representing cerebrospinal fluid (CSF), gray matter (GM), 

and white matter (WM). 

At present, two of the most widely used software 

packages in the neuroimaging community contain 
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automated segmentation routines that utilize iterative 

approaches to classify brain images into the three tissue 

classes. These packages are: SPM5 [3], written by the 

Wellcome Department of Imaging Neuroscience at 

University College London, UK, and version 4 of FMRIB 

Software Library (FSL) [4], written by the Analysis Group, 

FMRIB, Oxford, UK. This paper will provide a quantitative 

analysis and comparison of the segmentation algorithms in 

SPM5 and FSL for the whole brain, as well as for the 

subcortical region, utilizing the new subcortical structure 

extraction tool from FSL (named FIRST) as a gold standard 

for the comparison.  

Although previous studies have provided comparisons of 

tissue segmentation algorithms [5][12][12][14] including 

the ones from SPM and FSL, our comparison utilizes the 

latest versions of the software packages, a variety of 

independent datasets, and the most widely used metrics in 

the literature. Such a comprehensive analysis of this scope 

has not been previously carried out and can be quite useful 

to current and future users of these software packages.  

The paper is organized as follows. Section II gives a 

brief summary of the two software packages and their 

respective segmentation routines. A description of the 

datasets used for the comparison is provided in section III. 

The comparison methodology appears in section IV while 

results and a discussion of the results are found in section 

V. The conclusion and future work are stated in sections VI 

and VII, respectively. 

II. SEGMENTATION ALGORITHMS 

A. SPM5 - SEGMENT 

The segmentation routine in SPM5 is based on a unified 

segmentation model that performs tissue segmentation, bias 

correction, and spatial normalization all in the same model 

[6] to address the inherent circularity in the voxel-based 

morphometry (VBM) analysis technique used by 

researchers. The Expectation-Maximization (EM) 

algorithm is used to obtain the optimum parameters 

corresponding to a mixture of Gaussians model 

representing the tissue classes. Tissue probability maps are 

used to perform an affine transformation of the brain 

anatomy to standard International Consortium of Brain 

Mapping (ICBM) / Montreal Neurological Institute (MNI) 

space after which the segmentation is performed. 

Preprocessing of the anatomical brain volumes is not 

typically required. 
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B. FSL - FAST 

 The FMRIB Automated Segmentation Tool (FAST) is 

part of the FSL library. The segmentation routine used in 

the tool is based on a Hidden Markov Random Field 

(HMRF) model that is optimized using the Expectation-

Maximization algorithm [7]. The HMRF model is more 

robust than similar finite mixture models because it takes 

into account spatial information in terms of mutual 

information in local neighborhoods and uses this 

information to aid in the segmentation of the tissue classes.  

The brain volume is first registered to the standard MNI 

space using apriori tissue probability maps. FAST then 

segments the brain volume into the three tissue classes and 

performs bias correction. The required input to this 

program is a skull-stripped version of the anatomical image 

and users are expected to provide this information using the 

FSL’s own brain extraction tool or using a third party tool. 

In our analysis, the brainmask utility from the 

Neuroimage Processing Toolkit (NPTK) 0, developed in 

the Signal and Image Processing Lab at the University of 

Texas at Dallas, is used after the skull stripping. In a 

previous work, the brainmask utility was found to 

augment the output of the brain extraction tool for a more 

complete image of the brain [9].  

C. FSL – FIRST 

The FMRIB Integrated Registration and Segmentation 

Tool (FIRST) is a relatively new addition to the FSL suite 

[10]. This addition addresses subcortical structures of the 

brain which are characterized by parameters of surface 

meshes and point distribution models located in a database. 

The database was constructed with the help of manually 

segmented data by the Center of Morphometric Analysis at 

Massachusetts General Hospital in Boston. T1-weighted 

images passed to this tool are matched to the database of 

subcortical structures and the most probable structure is 

extracted based on the shapes in the image. Specific 

structures can be extracted as specified by the user. 

III. DATA  

For the analysis and comparison of the two algorithms, 

three different datasets were used. The first dataset 

corresponded to the digital phantom brain provided by the 

McConnell Brain Imaging Center under the Brainweb 

module [11]. The advantage of using the Brainweb dataset 

in the comparison was the availability of a ground truth for 

the tissue classes (CSF, GM, and WM) from which the 

digital phantoms were created.  

The second dataset consisted of real data acquired from a 

Siemens Trio 3T magnet of 32 normal subjects with the 

following two imaging contrasts: T1-weighted spin echo 

(SE) MRI and T2-weighted turbo-spin echo (TSE) MRI. 

This protocol specified the acquisition of T1-weighted 

anatomical MRI at a spatial resolution of 1.0x1.0x1.2 mm
3
 

and the structural T2-weighted TSE axial scans at a spatial 

resolution of 0.9×0.9×3.0 mm
3
. This dataset, which shall be 

referred to as the “real dataset” from this point forward, had 

no ground truth available.  

The final dataset used for comparison was the Internet 

Brain Segmentation Repository (IBSR) provided by 

Massachusetts General Hospital (MGH) in association with 

Harvard Medical School. This dataset consisted of 20 

normal MR brain image sets with their manual 

segmentations provided by the Center for Morphometric 

Analysis at MGH (http://www.cma.mgh.harvard.edu/ibsr/). 
The manual segmentations included in the dataset had been 

performed by the experts at MGH and are thus used as the 

ground truth for validation.  

IV. COMPARISON METHODOLOGY 

For the Brainweb and IBSR datasets, which included 

ground truth segmentations, the misclassification rate 

(MCR) metric [12][13] as well as the sensitivity and 

specificity metrics were used to assess tissue classification.  

For the real dataset, the Dice overlap metric [12][14] was 

used to measure the similarity of the segmented results 

across the two image types. This cross-validation provided 

a simple yet effective way to compare the consistency of 

the segmentation algorithms between different modalities. 

To generate the data for the MCR and the other metrics, the 

command line tool 3dOverlap from the AFNI [15] 

software was used. This tool performed a voxel by voxel 

volumetric overlap of two images to determine the total 

number of voxels that were within their intersection.  

The output of the FIRST tool was used to provide a 

“gold standard” for evaluating the performance of SPM5 

and FSL. The segmented gray matter tissue was first found 

for each subject using SPM5 and FAST. FIRST was 

subsequently used to extract the subcortical structures from 

the anatomical image of each subject. Masking the GM 

tissue volumes obtained from SPM5 and FSL with the 

subcortical structures labeled by FIRST, a corresponding 

GM composition of each structure was obtained. Using 

3dOverlap, the number of voxels was counted to calculate 

the percentage GM composition.  

Of the subcortical structures defined in FIRST, all except 

the brain stem and the lateral ventricles were considered to 

be gray matter. The brain stem consists of both gray and 

white matter, and was omitted from the analysis. The lateral 

ventricles are filled with CSF and devoid of gray matter. 

The structures that were compared included the nucleus 

accumbens, amygdale, caudate, hippocampus, pallidus, 

putamen, and thalamus from both hemispheres of the brain. 

It is worth noting a mechanistic challenge encountered in 

the implementation of this analysis. The spatial 

normalization of the IBSR dataset proved problematic for 

the automated unified segmentation algorithm in SPM5. 

The algorithm was unable to perform a correct initial affine 

transformation matching the anatomy to the probability 

maps. To circumvent this issue, the input image had to be 

reoriented by centering the image on the anterior 

commissure prior to segmentation.  
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Sensitivity Specificity  MCR 

FAST 89.6% 98.7% 10.4% 

SPM 90.8% 98.8% 9.1% 
 

Table 1 – Brainweb Dataset: Average metric values for whole brain  
 

This manual reorientation of the input image makes the 

process less automated. The reason the registration fails for 

these images is because the tissue probability maps contain 

no extracortical information and hence the registration 

model is suboptimal for the images having this information 

[16]. FAST’s normalization routine does not suffer from 

the same problem despite using similar tissue probability 

maps indicating that perhaps the FMRIB Linear Image 

Registration Tool (FLIRT), which is used as part of the 

FAST routine, is more robust in handling images of 

different orientations than the corresponding registration 

algorithm that is included in the SPM segmentation tool. 

V. RESULTS AND DISCUSSION 

A. Brainweb 

The Brainweb dataset, while consisting of a single digital 

phantom, comes with different simulation options 

pertaining to the amount of noise and the amount of RF 

inhomogeneity in the simulated image.  To verify our 

analysis, we compared Dice overlap measures with other 

results from the literature for this particular dataset and 

obtained similar values [6].  

Interestingly enough, the best results for both software 

packages were obtained when using simulated images with 

a moderate amount of Rician noise present, as opposed to 

images without any noise (see Fig 1). This is also noted in a 

recent publication by Ferreira da Silva [17], and bodes well 

for other real datasets since imaging noise is an inevitable 

part of image acquisition. Also note that the RF 

inhomogeneity parameter does not significantly alter the 

results, as indicated by the curves in Fig 1, due to the bias 

correction algorithms that are implemented within the 

segmentation tools. 

 
 

Fig 1 – Dice overlap metric versus noise level in the Brainweb dataset. 

Note: Different RF inhomogeneity levels negligibly affect outcomes. 

Graph shows SPM5 segmentation; FAST shows a similar trend. 

GM WM CSF 

FAST 73.9% 79.5% 60.4% 

SPM 75.1% 81.9% 42.1% 
 

Table 2 – Real dataset: Average Dice overlap metric for 3 tissue classes 

Approximately 5 outliers were removed from the set of 32. 

 

The lower aggregate MCR metric of SPM5 (see Table 1) 

indicates that it performed a more accurate segmentation of 

the Brainweb volumes, on average, as compared to FAST. 

The values in Table 1 are the average metric values of the 

CSF, GM, and WM tissue classes of the Brainweb phantom 

for four different noise percentages: 1, 3, 5 and 7% noise at 

20% RF inhomogeneity. The noise percentage is 

representative of the percent ratio of the standard deviation 

of the white Gaussian noise versus the signal. Higher 

sensitivity and specificity metrics indicated that the 

segmentation algorithm in SPM5 correctly identified more 

tissue voxels than did the FAST algorithm, and also was 

better at rejecting tissue voxels that were not related to the 

tissue class of interest.  

These three metrics all support the finding that SPM5, 

with its segmentation algorithm based upon the Gaussian 

Mixture Model, provides a slightly better segmentation 

output than the HMRF model used in FAST (see Fig 2). 

The default parameters were used for SPM5’s segmentation 

algorithm, whereas in FAST, it was found that of the 

various segmentation options, the best performance was 

obtained using MNI152 tissue probability maps for a priori 

estimation of initial parameters, option (-a) with a tissue 

probability map output option (-p).  The outputs then had a 

threshold of 50% applied to them to obtain the final binary 

image results for each tissue class. 

B. Real Data 

Although a ground truth against which to verify the 

outputs of the segmentation algorithms was not available 

for the real dataset, this dataset contained images of the 

subjects in both the T1-weighted and T2-weighted 

contrasts. The segmented results of these two images were 
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Fig 2 – Axial view of the Brainweb dataset. The GM ground truth shown 

in white (a), the output of FAST overlaid on the ground truth (b), and the 

output of SPM5 overlaid on the ground truth (c). Note more white pixels 

are showing through in (b) than (c) indicating that SPM5’s segmentation 

is more accurate and has less disparity with the ground truth than FSL. 
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thus used for cross-validation to determine which 

segmentation algorithm was more consistent. In this 

segmentation, the best parameters as determined previously 

with the phantom brain were used.  

The results of the segmentation show that the SPM5 

GMM based segmentation algorithm was generally more 

consistent than the FAST algorithm, with Dice overlap 

measures between T1 and T2 segmented images 

consistently higher with the exception of the CSF tissue 

class (see Table 2). A Dice overlap measure of 70% or 

greater indicates a high level of agreement between the two 

images as stated by Bartko [18].   

The large difference in Dice values for the CSF tissue 

class between the two software packages is surprising but 

probable since CSF accounts for a small portion of total 

brain matter. Even slight variations in the algorithms’ 

segmentation of CSF can yield large overlap errors.  

However, it does appear that SPM5’s algorithm favored 

GM/WM accuracy at the expense of CSF accuracy here.  

C. IBSR Data 

As noted earlier, segmentation of this dataset using the 

SPM5 package presented some challenges. The images had 

to be reoriented prior to segmentation; otherwise, a poor 

segmentation would result (see Fig 3). This problem did not 

afflict the FAST algorithm, even though it also uses similar 

tissue probability maps. This may indicate that the spatial 

normalization tool in the FSL package is more robust.  

However, the results of the whole brain segmentation 

favored SPM5’s segmentation algorithm with lower MCR  

values and higher sensitivity and specificity values when 

overlaid against the gold standard of the expert segmented 

tissue images (see Table 3). Comparing the results of this 

dataset against the results of the Brainweb dataset showed 

that the performance of the SPM5 algorithm was consistent 

for both datasets. MCR, sensitivity, and specificity values 

were consistent to the stated results. 

Note that the MCR values for the IBSR dataset were 

quite high but were similar to what Pham et al. [19] 

obtained using the same dataset. This was somewhat 

surprising but also understandable since the software 

packages were optimized using Brainweb during their 

development.  Therefore, they may perform very well on 

the Brainweb dataset as compared to the IBSR dataset.  The 

large MCR values could also be due in part to the results of 

the expert segmented images differing from the actual 

anatomy. 

D. Subcortical Region 

The subcortical region of the brain has always been a 

challenge to tissue segmentation algorithms. Although the 

 

Sensitivity Specificity  MCR 

FAST 74.6% 98.6% 25.4% 

SPM 78.0% 98.8% 22.0% 

 
Table 3 – IBSR Dataset: Average metric values for whole brain 

structures of the region are strictly GM, segmentation 

algorithms tend to incorrectly classify them as WM. The 

two software packages’ automated segmentation algorithms 

were tested in the subcortical region to determine their 

performance in this area. Fortunately, with the ground truth 

available for both the Brainweb and IBSR datasets, it was 

possible to compute the absolute performance of the 

algorithms in terms of their ability to correctly classify the 

subcortical structures as GM (see Table 4) using FIRST’s 

structure label extraction. 

From the table, we see that for both the Brainweb and the 

IBSR datasets the SPM5 segmentation algorithm yields the 

highest overlap with the ground truth GM tissue maps for 

both the subcortical area and the whole brain. The real 

dataset was omitted from the subcortical analysis since the 

results could not be validated. Again, note the prevalent 

higher values for Brainweb versus the IBSR dataset. 

VI. CONCLUSION 

This paper has presented a comparison of the tissue 

segmentation algorithms of two open-source MRI analysis 

packages that are currently widely used by researchers: 

SPM5 and FSL version 4. Three datasets were used to 

perform the comparison and a number of widely used 

metrics were used to determine the efficacy of the 

respective segmentation algorithms. An evaluation of the 

performance specifically in the subcortical region was also 

performed with the new subcortical label extraction tool 

from FSL. 

While both algorithms performed quite satisfactorily, the 

segmentation algorithm in SPM5 was found on average to 

be more accurate, consistent, and robust than the algorithm 

implemented in FSL for whole-brain segmentation in our 

experiments. With regards to the subcortical region, the 

datasets which had a ground truth available for validation 

were compared and the SPM5 algorithm was again found to 

perform better. Therefore, based on the results obtained in 

this analysis, our recommendation to researchers is to try 

the segmentation algorithm found in the SPM5 software 

package in order to see how the outcome compares to their 

software package of choice for the subcortical region or the 

whole brain. 

Aside from the comparison results that were computed in 

this analysis and the significance of those results, we 

believe that the validation methods that were presented here 

may also be of use to other researchers that seek to repeat 

these experiments for themselves or to validate their own 

results.  

 

Brainweb IBSR Brainweb IBSR 

FAST 92.1% 69.1% FAST 89.2% 75.6% 

SPM 92.9% 73.7% SPM 91.5% 79.0% 
 

    (a)            (b) 
 

Table 4 – Dice overlap measures of the GM composition of the 

subcortical brain structures (a) and also of the whole brain (b). Values are 

the computed averages of the datasets. 
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VII. FUTURE WORK 

It should be noted that the subcortical GM comparison 

was performed with the assumption that the output of the 

FIRST tool was the “gold standard” against which to 

validate the results against.  As this was the initial version 

of the FIRST tool, subsequent versions should provide 

more accurate label extracted subcortical structures which 

would then make such comparisons in the subcortical 

region more reliable and would lay the foundation of future 

work. 
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Fig 3 – Example of incorrect segmentation of IBSR data using SPM5. The original image (left), the automated segmentation result for GM (middle), 

the segmentation output after manually reorienting the data to the approximate orientation of the tissue probability maps (right).  
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