<?xml version="1.0" encoding="UTF-8"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns="http://purl.org/rss/1.0/" xmlns:taxo="http://purl.org/rss/1.0/modules/taxonomy/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:syn="http://purl.org/rss/1.0/modules/syndication/" xmlns:admin="http://webns.net/mvcb/" > <channel rdf:about="http://www.nitrc.org/export/rss_sfnews.php"> <copyright>Copyright 1999-2000 VA Linux Systems, Inc.</copyright> <title>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity News</title> <link>http://www.nitrc.org</link> <description>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity Latest News</description> <items> <rdf:Seq> <rdf:li rdf:resource="http://www.nitrc.org/forum/forum.php?forum_id=9060" /> <rdf:li rdf:resource="http://www.nitrc.org/forum/forum.php?forum_id=8823" /> <rdf:li rdf:resource="http://www.nitrc.org/forum/forum.php?forum_id=4865" /> </rdf:Seq> </items> </channel> <item rdf:about="http://www.nitrc.org/forum/forum.php?forum_id=9060"> <title>Fix for GraphVar 2: Hyperparamter</title> <link>http://www.nitrc.org/forum/forum.php?forum_id=9060</link> <description>fixed an issue for LinSVM (classification, regression, probabilisitc): tuned hyperparameters derived from nested-cross validation<br /> were not applied to the models (i.e., prediction was similar to no hyperparameter optimization). ElasticNet was unaffected.</description> <dc:subject>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity</dc:subject> <dc:creator>Johann Kruschwitz</dc:creator> <dc:date>Mon, 19 Nov 2018 10:31:34 GMT</dc:date> </item> <item rdf:about="http://www.nitrc.org/forum/forum.php?forum_id=8823"> <title>GraphVar 2.0 machine learning paper in JNeuroscience Methods</title> <link>http://www.nitrc.org/forum/forum.php?forum_id=8823</link> <description>Our second GraphVar article (accompanying the GraphVar 2.0 toolbox) is published in the Journal of Neuroscience Methods.<br /> The article provides an easy to follow introductory review to the basics of machine learning and its application within GraphVar. GraphVar 2.0 will make big data neuroscience readily accessible to a broader audience of neuroimaging investigators.<br /> <br /> https://doi.org/10.1016/j.jneumeth.2018.07.001</description> <dc:subject>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity</dc:subject> <dc:creator>Johann Kruschwitz</dc:creator> <dc:date>Wed, 18 Jul 2018 11:00:23 GMT</dc:date> </item> <item rdf:about="http://www.nitrc.org/forum/forum.php?forum_id=4865"> <title>GraphVar now published in &quot;Journal of Neuroscience Methods&quot;</title> <link>http://www.nitrc.org/forum/forum.php?forum_id=4865</link> <description>The GraphVar Team is happy to announce that GraphVar (https://www.nitrc.org/projects/graphvar/) is now published in the &quot;Journal of Neuroscience Methods&quot;!<br /> <br /> If you think that GraphVar is useful for your work we would be happy if you cite this toolbox as:<br /> <br /> Kruschwitz JD, List D, Waller L, Rubinov M, Walter H, GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity, Journal of Neuroscience Methods (2015), http://dx.doi.org/10.1016/j.jneumeth.2015.02.021</description> <dc:subject>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity</dc:subject> <dc:creator>Johann Kruschwitz</dc:creator> <dc:date>Thu, 26 Feb 2015 2:15:18 GMT</dc:date> </item> </rdf:RDF>