<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
	xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
	xmlns="http://purl.org/rss/1.0/"
	xmlns:taxo="http://purl.org/rss/1.0/modules/taxonomy/"
	xmlns:dc="http://purl.org/dc/elements/1.1/"
	xmlns:syn="http://purl.org/rss/1.0/modules/syndication/"
	xmlns:admin="http://webns.net/mvcb/" >
 <channel rdf:about="http://www.nitrc.org/export/rss_sfnews.php">
  <copyright>Copyright 1999-2000 VA Linux Systems, Inc.</copyright>
  <title>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity News</title>
  <link>http://www.nitrc.org</link>
  <description>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity Latest News</description>
 <items>
 <rdf:Seq>
 <rdf:li rdf:resource="http://www.nitrc.org/forum/forum.php?forum_id=9060" />
 <rdf:li rdf:resource="http://www.nitrc.org/forum/forum.php?forum_id=8823" />
 <rdf:li rdf:resource="http://www.nitrc.org/forum/forum.php?forum_id=4865" />
 </rdf:Seq>
 </items>
 </channel>

 <item rdf:about="http://www.nitrc.org/forum/forum.php?forum_id=9060">
   <title>Fix for GraphVar 2: Hyperparamter</title>
   <link>http://www.nitrc.org/forum/forum.php?forum_id=9060</link>
   <description>fixed an issue for LinSVM (classification, regression, probabilisitc): tuned hyperparameters derived from nested-cross validation&lt;br /&gt;
were not applied to the models (i.e., prediction was similar to no hyperparameter optimization). ElasticNet was unaffected.</description>
   <dc:subject>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity</dc:subject>
   <dc:creator>Johann Kruschwitz</dc:creator>
  <dc:date>Mon, 19 Nov 2018 10:31:34 GMT</dc:date>
  </item>

 <item rdf:about="http://www.nitrc.org/forum/forum.php?forum_id=8823">
   <title>GraphVar 2.0 machine learning paper in JNeuroscience Methods</title>
   <link>http://www.nitrc.org/forum/forum.php?forum_id=8823</link>
   <description>Our second GraphVar article (accompanying the GraphVar 2.0 toolbox) is published in the Journal of Neuroscience Methods.&lt;br /&gt;
The article provides an easy to follow introductory review to the basics of machine learning and its application within GraphVar. GraphVar 2.0 will make big data neuroscience readily accessible to a broader audience of neuroimaging investigators.&lt;br /&gt;
&lt;br /&gt;
https://doi.org/10.1016/j.jneumeth.2018.07.001</description>
   <dc:subject>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity</dc:subject>
   <dc:creator>Johann Kruschwitz</dc:creator>
  <dc:date>Wed, 18 Jul 2018 11:00:23 GMT</dc:date>
  </item>

 <item rdf:about="http://www.nitrc.org/forum/forum.php?forum_id=4865">
   <title>GraphVar now published in &amp;quot;Journal of Neuroscience Methods&amp;quot;</title>
   <link>http://www.nitrc.org/forum/forum.php?forum_id=4865</link>
   <description>The GraphVar Team is happy to announce that GraphVar (https://www.nitrc.org/projects/graphvar/) is now published in the &amp;quot;Journal of Neuroscience Methods&amp;quot;!&lt;br /&gt;
&lt;br /&gt;
If you think that GraphVar is useful for your work we would be happy if you cite this toolbox as:&lt;br /&gt;
&lt;br /&gt;
Kruschwitz JD, List D, Waller L, Rubinov M, Walter H, GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity, Journal of Neuroscience Methods (2015), http://dx.doi.org/10.1016/j.jneumeth.2015.02.021</description>
   <dc:subject>GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity</dc:subject>
   <dc:creator>Johann Kruschwitz</dc:creator>
  <dc:date>Thu, 26 Feb 2015 2:15:18 GMT</dc:date>
  </item>
</rdf:RDF>