User Guide to
The Computational Morphometry Toolkit!

Release 1.20
Torsten Rohlfing

March 23, 2011

Neuroscience Program, SRI International, Menlo Park, CA2

Abstract

This guide is intended as a very brief introduction of the main tools in the Computational Mor-
phometry Toolkit (CMTK), which is available in source code and as pre-compiled binaries from
http://www.nitrc.org/projects/cmtk/. The target audience of this document are CMTK users, who might
use this document as a reference to the most common processing tasks, and prospective users, who may
find this information useful to determine whether CMTK provides functionality that they can use. We
focus in particular on a simplified workflow for deformation morphometry studies based on magnetic
resonance images: DICOM conversion, artifact correction, affine and nonlinear image registration, re-
formatting, Jacobian determinant map generation, and statistical hypothesis testing.

I'This document is licensed under the Creative Commons Attribution License Version 3.0.
2Continued development and maintenance of CMTK is funded by the National Institute of Biomedical Imaging and Bioengi-
neering under Grant No. RO1 EB008381.

Contents 2
Contents
1 Introduction 3
1.1 Coordinate CONVENLIONS . . . « . . v v v v vttt ettt e e e e e e e 3
1.2 Registration Terminology L 5
1.3 Supported Image File Formats 5
1.4 Toolkit-Global Command Line Options 6
2 Step-by-Step Morphometry 7
2.1 DICOM Image Stacker e e 7
2.2 Interleaved Image Motion Artifact Correction 8
2.3 MR Intensity Bias Field Correction 8
2.4 Affine Image Registration e 8
2.5 Nonrigid Image Registration L e 11
2.6 Reformating Registered Images 12
2.7 Jacobian Determinant Maps L e 13
2.8 Statistical Testing e e e e e e 13
2.9 Adas-based Segmentation Lo Lo Lo e e 14
3 Atlas Construction 16
3.1 Averaging Pairwise Correspondences 16
3.2 TIterative Shape Averaging ot e e e e e 16
3.3 Groupwise Population Registration L oL o 16
4 More Gory Details 18
4.1 Registration Options for Image Pre-Processing 18
4.2 GPU-Accelerated Tools 18
Index 22

1 Introduction

The Computational Morphometry Toolkit, or short CMTK, is a set of software tools that perform vari-
ous types of processing and analysis on three-dimensional (3D) image data. CMTK is available both in
source code (licensed under the GNU GPL3) and as pre-compiled binaries from http: //www.nitrc.org/
projects/cmtk/

CMTXK is primarily a collection of command line tools, which make the toolkit ideally suited for unattended
batch processing of large amounts of data. In addition, CMTK’s back-end libraries, which are shared by all
command line tools, can be used as a relatively lightweight, yet powerful, platform for implementation of
new image processing algorithms.

IATEX source for this User Guide, including all figures, can be checked out from the CMTK Subversion
repository via

svn co https://nitrc.org/svn/cmtk/trunk/doc/UserGuideCMIK/

1.1 Coordinate Conventions

For medical image data, CMTK uses an anatomy-based coordinate system, which we refer to as “RAS” coor-
dinates. This means that the x direction of the coordinate space increases towards the anatomical “Right,” the
y direction increases towards the anatomical “Anterior,” and the z direction increases towards the anatomical
“Superior.” The coordinate space origin, (0,0,0), thus coincides with the “Left-Posterior-Inferior” corner of
the image volume.

All images that are read into one of CMTK’s tools are first reoriented to fit this coordinate system. This
means that the storage order of image pixels in memory is such that the fastest-varying of the three pixel
indexes corresponds to the “Left”—"Right” anatomical direction, the second fastest to the “Posterior”—
”Anterior” direction, and the slowest varying to the “Inferior”—"Superior” direction. Consequently, the
first pixel in memory is the one that is the Left-Posterior-Inferior-most pixel anatomically.

For image file formats that define subject orientation based on direction vectors within an anatomy-based
coordinate space, which is the majority of modern formats, CMTK determines the nearest anatomical ori-
entation of the image within £45 degrees around each rotation axis.

As a matter of policy, all of CMTK’s tools that write an output image file based on some input image file
can be expected to write the output image in the same pixel order and orientation as the input, so long as the
output file format supports this. An example where this is not the case is when a file is read in NIFTI format
with RAS pixel order, but written in Analyze 7.5 format, which does not support RAS order. In this case,
the output would be written in LAS order as the closest matching orientation.

To confirm that images are read and written correctly, and to diagnose problems related to image orientation,
CMTK comes with a very simple triplanar image viewer (see screen shot in Fig. 1), adequately named
“triplanar .” The coordinates shown in this viewer for any image are exactly the coordinates that all
CMTK tools use. Note that for the triplanar viewer to be available, CMTK must be built with support for
the Qt toolkit! (version 4.3.0 or higher), and the “BUILD_GUI ” build option must be enabled.

Thttp://qt .nokia.com

http://www.nitrc.org/projects/cmtk/
http://www.nitrc.org/projects/cmtk/
http://qt.nokia.com

1.1

Coordinate Conventions

5

10 | Tiphanar Viewer spyr mE R
Study View Operators Export
- Coronal -Sagittal
AlllL {} R
Landmarks | Window/Level | Images |
[120 | [120 | [77 |
i Center ‘ | Go To
i [~}
| Go To | | Delate ‘ | Add.. |

ilmpor‘(Landmarks. !

|Pixel Index: [120,120,77] Value: 350.000000

Figure 1: Screen sh

ot of CMTK’s triplanar image viewer.

1.2 Registration Terminology 5

1.2 Registration Terminology

Since one of the primary strengths of CMTK is its selection of powerful and well-tested registration tools,
we shall first clarify some important registration terminology. In pairwise registration, throughout this guide
as well as in all tools and source code, we shall refer to one image as the reference and the other as the
floating image. Others may refer to these as the fixed and the moving image, respectively. By definition,
all coordinate transformations computed by CMTK are functions that map from the space of the reference
(fixed) image to the space of the floating (moving) image. As a result, when reformatting one image to
match the other, it is the floating image by default that will be transformed to match the reference image.

Note that when we speak about transforming coordinates of features, such as landmarks or the nodes in a
mesh, then the coordinates of the reference image will be transformed to match the floating image.

1.3 Supported Image File Formats

CMTK supports a wide range of image file formats, both for import and export. When reading an image file
into CMTK, its type is detected automatically. Note that in order to correctly identify the format of images
with separate header and data files, it is necessary to provide CMTK with the path to the header file, not the
data file.

Whether a particular file can be read into CMTK can easily be tested using CMTK’s describe tool.
For example, to test (and describe) the content of an Analyze 7.5% header/image pair, example.hdr and
example.img , one would run the following command:

describe example.hdr

When writing files, CMTK determines the desired file format based on the suffix of the output path. The
following suffixes are supported:

nii Single-file NIfTI-1 image?.

img NIfTI image with detached header. Header file will be written with suffix .hdr

nrrd Single-file Nrrd*.

nhdr Nrrd with detached header. The data file will be written with .raw suffix.

hdr Analyze 7.5 detached header. The data file will be written with suffix ing.

Note that both Analyze and NIfTI header/data file pairs use the suffixes .hdr and .img . For historic reasons,
using .hdr as the output file suffix will always invoke Analyze export, whereas the .img suffix will invoke
NIfTT export. Both formats need to be read using the .hdr file, however.

Note also that, by default, all data files are written with gzip compression. Because CMTK contains a
bundled zlib library, this is true even when the gzip tool itself is not installed. This behavior can be
disabled by defining the CMIK_WRITE_UNCOMPRESSED environment variable. On a Unix/Linux system using
the csh shell, this would be achieved via

Zhnttp://eeq. sourceforge. net /ANALYZET5 . pdf
3http://nifti.nirh.nih.qov/nifti-1/
*http://teen. sourceforge.net /nrrd/

http://eeg.sourceforge.net/ANALYZE75.pdf
http://nifti.nimh.nih.gov/nifti-1/
http://teem.sourceforge.net/nrrd/

1.4 Toolkit-Global Command Line Options 6

Option Function

—help Write a summary of the tool command line options to standard
output.

—wiki Write the command line option summary in MediaWiki markup

(this is convenient for creating a web-based command line de-
scription collection.

—-version Write the CMTK version to standard output.

—verbose-level <n> Level of verbosity, where “<n>” is an integer number from O to 9.
Default is O for essentially quiet operation. Higher levels produce
more detailed status output for debugging.

——echo Write a copy of the entire command line to standard output. This
is useful for debugging scripts, i.e., when it is unclear whether the
tool is really invoked with the intended options and arguments.

——threads <n> Set maximum number of parallel threads to “<n>" for the POSIX
Threads and OpenMP parallelization models. This does not affect
the number of parallel jobs when using Grand Central Dispatch
on MacOS-X, which determines the number of parallel tasks at
system level.

Table 1: Command line options supported by all CMTK command line tools.

export CMIK _WRITE UNCOMPRESSED=1

where only the definition of the variable is relevant, and its value is ignored. Thus, to re-enable compressed
writing, rather than setting the variable to “0” for example, use

unset CMIK_WRITE UNCOMPRESSED

or its appropriate equivalent inside your favorite shell.

1.4 Toolkit-Global Command Line Options

All command line tools in CMTK support a set of options that control the global behaviour of the toolkit.
These are summarized in Table 1. In addition, a number of tools also supports the “~——xml ” option, which
prints a command line description in XML format for use of the tools as plugins in 3D Slicer.

5http://www.slicer.org

http://www.slicer.org

Figure 2: Example of interleaved image before (left) and after (right) correction of motion artifacts using the
film tool. These are roughly mid-sagittal slices through a late-echo FSE image acquired in three interleaved
passes.

2 Step-by-Step Morphometry

This section provides a step-by-step guide to the tools used in a typical morphometry study using the CMTK
tools. It is not intended to provide a complete list of available tools. We are also not covering all available
options of each tool. Note that a complete list of supported options can always be obtained by running a
given tool with the ——help command line option.

2.1 DICOM Image Stacker
When dealing with 3D medical image data in particular, the first step of processing is usually the conversion
of a stack of single-slice image files in DICOM format to a single-file 3D image. To this end, CMTK

provides a tool that can search through a file system tree, find all DICOM files in it, group the ones that form
3D image volumes, and write each of these volumes into a separate file in one of the supported formats.

For example, the command

dcm2image —-recurse —-out-pattern image$N.nii /path/to/dicom
or short

dem2image -r -0 image®N.nii /path/to/dicom

would recursively search the file system under /path/to/dicom and write all resulting image volumes to
consecutively numbered image files in NIfTI format, image-1.nii , image-2.nii , and so on.

2.2 Interleaved Image Motion Artifact Correction 8

2.2 Interleaved Image Motion Artifact Correction

When MR images are acquired as multiple interleaved sparse image stacks (“passes”), subject motion be-
tween the passes can lead to characteristic artifacts in the final, interleaved image stack (see Fig. 2 for an
example). CMTK implements an algorithm for post-reconstruction correction of these artifacts [22] in the
film tool (for “Fix InterLeaved Motion™).

The film tool operates in three stages: first, the interleaved image stack is separated into the original passes,
and all passes are co-registered using rigid intensity-based registration to determine the inter-pass motion
parameters. Second, volume injection is used to obtain a coarse reconstructed, motion-corrected image,
which is then refined in the third stage using an iterative inverse interpolation algorithm (see Ref. [22] for
details).

For proper operation, the film tool needs to be given the number of passes in the interleaved images, for
example for a three-pass image:

film —-passes 3 input.nii corrected.nii

In most cases, the through-plane acquisition direction can be guessed from the data.

2.3 MR Intensity Bias Field Correction

CMTK implements a model-free algorithm for intensity bias field correction based on minimization of
image entropy [13]. The mrbias tool, which implements this algorithm, is typically called as follows:

mrbias ——degree-mul 2 —-mask foreground.nii spgr.nii spgr_corrected.nii

which computes a second-order polynomial multiplicative bias field. Computation is constrained via a
(binary) mask that is read from the foreground.nii image. Alternatively, the tool can generate its own
mask via the ——thresh-min and ——thresh-max command line parameters.

One of the advantages of this particular algorithm for intensity bias field correction is that it does not involve
a model of either the anatomy in the image or the tissue types that are present. It, therefore, works well on
human as well as non-human images (Fig. 3), and on brain as well as non-brain anatomy, such as abdominal
images.

To generate foreground masks automatically, CMTK provides a very simple “level set-type” segmentation
tool:

levelset --binarize spgr.nii foreground.nii

In very broad terms, the tool implements an extreme simplification of the algorithm for segmentation without
edges by Chan & Vese [5]. By default, the tool writes an image that is the resulting level set function, but
using the —binarize switch turns the output into a thresholded, binary mask that is appropriate for use by
the mrbias tool.

2.4 Affine Image Registration

The basic pairwise image registration tool in CMTK, registration , implements an algorithm similar to
the multi-resolution algorithm by Studholme et al. [28]. More technical detail about our implementation in
particular can be found in Ref. [18], albeit only in German.

2.4 Affine Image Registration 9

Corrected

Original

Figure 3: Examples of MR intensity bias field correction using a second-order polynomial multiplicative
bias field computed by the mrbias tool. Top row: applied to a human brain SPGR image acquired at 3T.
Bottom row: applied to a rat brain early-echo FSE image acquired at 3T.

2.4 Affine Image Registration 10

Mask Image with Mask Outline

Figure 4: Examples of foreground/background segmentation using the levelset tool. Top row: SPGR im-
age acquired at 3T. Bottom row: fluorescent confocal laser scanning microscopy image of a locust brain [10].
Both examples were computed by running the levelset tool with default settings and no image-specific
parameters. [Locust images courtesy of U. Homberg, Universitit Marburg (Germany).]

2.5 Nonrigid Image Registration 11

In order to compute an affine registration between two images, the registration tool can be run as follows:

registration ——initxlate ——dofs 6,9 ——auto-multi-levels 4 \
-0 affine.xform ref.nii flt.nii

This performs a registration of the floating image, f1t.nii , to the reference image, ref.nii , where all
optimization and image resampling parameters are automatically determined for a 4-level multi-resolution
procedure.

At each resolution level, the registration first optimizes 6 degrees of freedom (DOF), i.e., translation and
rotation of a 3D rigid transformation. Afterwards, 9 DOFs are optimized, i.e., three anisotropic scale factors
in addition to the translational and rotational parameters. Supported DOF numbers are: 0 (no registration,
for testing), 3 (translation only), 6 (rigid: translation, rotation), 7 (similarity: translation, rotation, global
scale), 9 (translation, rotation, anisotropic scale), and 12 (full affine: translation, rotation, scale, and shears).

By default, registration uses the normalized mutual information [29] image similarity measure. Other avail-
able similarity measures are: standard mutual information [14, 31] (——mi), mean squared difference (——msd),
normalized cross-correlation (-—ncc), and correlation ratio [17] (——cr)

In the above example, the registration transformation is initialized (via --initxlate) by translat-
ing the floating image’s center to that of the reference image. For more complex initializations, the
make_initial affine tool can be used, which supports centers of mass, principal axes [1], and image
orientation vectors (e.g., as provided by the original DICOM data).

For example, in order to first initialize a transformation using principal axes and then use the result as the
initial transformation for intensity-based refinement, one would use the following sequence of commands:

make_initial xform —-principal-axes ref.nii flt.nii initial.xform
registration --initial initial.xform --dofs 6,9 --auto-multi-level 4 \
-0 affine.xform ref.nii flt.nii

2.5 Nonrigid Image Registration

Pairwise nonrigid image registration in CMTK implements an algorithm introduced by Rueckert et al. [25],
which uses as its transformation model multi-resolution free-form deformations based on cubic spline in-
terpolation between sparse, uniformly distributed control points. Our particular implementation, which uses
SMP parallelism to take advantage of multi-CPU systems, was described in Ref. [21].

A very simple nonrigid registration using a 40 mm control point grid, registering floating image flt.nii to
reference image ref.nii based on an affine transformation affine.xform can be run as follows:

warp -o ffd40.xform --grid-spacing 40 —-initial affine.xform ref.nii flt.nii
Typically, however, one would want to run a more sophisticated multi-level deformation, say with three re-
finements (each reducing the grid spacing by 1/2 for a final spacing of 5 mm), and constrain the deformation

using grid bending energy:

warp —o ffd5.xform ——grid-spacing 40 —-refine 3 ——energy-weight le-1 \
——initial affine.xform ref.nii flt.nii

2.6 Reformating Registered Images 12

File View Slice Transform Help

Left Slice:128 Right Transparency

Fixed Image] Meoving Image

|

Fixed Image Black / White Moving Image Black { White

Fixed Image

A

Figure 5: Screen shot of CMTK’s fview side-by-side registered image viewer.

To prevent folding of the deformation grid, it is possible to instead constrain the Jacobian determinant of the
deformation to be nonzero, which is achieved by changing the above command as follows:

warp -o ffd5.xform ——grid-spacing 40 —refine 3 ——Jjacobian-weight le-5 \
——initial affine.xform ref.nii flt.nii

2.6 Reformating Registered Images

To reformat the registered floating image following the examples in the previous section, run
reformatx -o reformat.nii —-floating flt.nii ref.nii ffd5.xform

The somewhat unintuitive order of arguments on the command line is due to the versatility of the reformatx
tool, which allows for the concatenation of arbitrary transformations (and their inverses), such as

reformatx -o reformat.nii —-floating img3.nii \
imgl.nii imgl_to_2.xform —--inverse img3 to 2.xform

By default, reformatx uses trilinear interpolation, but it also supports cubic (--cubic) and cosine-
windowed sinc (--sinc-cosine) interpolation for intensity images, partial volume interpolation [14]
(—pv) for label images, and nearest neighbor (-——nn) interpolation for all types of images.

When built with Qt/GUI support CMTK provides a simple, interactive tool, “fview ” to verify the successful
alignment of images (Fig. 5). Applied to the same images and transformations as the previous reformatting
example, the command line for interactive inspection would be

fview imgl.nii img3.nii imgl to_2.xform --inverse img3_to_2.xform

2.7 Jacobian Determinant Maps 13

In general, fview is called with at least two parameters, the fixed and the moving image. These are followed
by a sequence of transformations, each of which can be inverted by preceding it with “—inverse . The
effective transformation applied to the moving image is the concatenation of the entire sequence.

The fview tool has a simple, intuitive user interface, which presents a side-by-side display of fixed and
reformatted moving image, with variable transparent overlay of the fixed onto the moving image. Slice
orientation (axial, sagittal, coronal) and slice location can be adjusted, as can be interpolation kernel (lin-
ear, cubic, sinc, nearest neighbour, partial volumes) and image color maps and window/level settings. In
addition, the tool can selectively disable the nonrigid components of applied transformations and only apply
their global affine parts.

2.7 Jacobian Determinant Maps

Jacobian determinant maps, which are a staple ingredient of deformation-based morphometry studies [2],
can also be computed using the reformatx tool. In the simplest case, we may want to compute the Ja-
cobian determinant map for a transformation timel_to_time2.xform between two images, say images
timel.nii and timel.nii acquired from the same subject at two time points. The command to compute
the appropriate Jacobian determinant map, jacobian.nii , is then

reformatx -0 jacobian.nii timel.nii -—jacobian timel to_time2.xform

More interestingly, say we want to compare these Jacobian maps from multiple subjects, all in the space of
a common atlas coordinate system. Then, instead of computing each map first in each subject’s coordinate
system and then reformatting these maps into atlas space, we can directly compute the maps in atlas space
by concatenation of transformations:

reformatx -o jaccbian.nii atlas.nii \
atlas to_timel.xform --jacobian timel to time2.xform

Here, every sample coordinate in atlas space is first mapped to subject time 1 space via
atlas_to_timel.xform . For the resulting location, the Jacobian determinant of the longitudinal trans-
formation, timel_to_time2.xform , is then computed.

Because the nonrigid transformations computed by the warp tool are generated via continuously differen-
tiable B-spline basis functions, we can compute the Jacobian analytically at any location in the domain of
the transformation, which means that the direct computation of Jacobians into atlas space does indeed avoid
one interpolation of the Jacobian determinant map.

Note that the reformatx tool allows an arbitrary number of transformations to be listed both before and after
the —jacobian switch, and any transformation can additionally be inverted by prefixing it with —inverse
(affine transformations are inverted explicitly, whereas nonrigid transformations are inverted numerically).

2.8 Statistical Testing

For group comparisons of, for example, Jacobian determinant maps between different subject groups, the
ttest tool computes different types of t-tests (all two-tailed) and statistics. In the simplest case, two popu-
lations A and B of maps can be tested against one another as follows:

2.9 Atlas-based Segmentation 14

ttest -o pvalues.nii —-tstats-file tstats.nii \

jacobianAl.nii jacobianA2.nii -- jacobianBl.nii jacobianB2.nii
This computes a pixel-wise two-tailed unpaired t-test between the two lists of images separated with “—"”
on the command line. The resulting p-values image is then written to pvalues.nii , and the t-statistics are
also written to tstats.nii

To compute a two-tailed paired t-test, make sure that there are an equal number of images before and
after the “~—-"" separator and that corresponding images in both groups are in the same order, then add the
—-paired option and run

ttest -o pvalues.nii ——tstats-file tstats.nii ——paired \
jacobianAl.nii jacobianA2.nii -— jacobianBl.nii jacobianB2.nii

Invoking ttest with only a single group of images (without “—-"" anywhere in the image list), will compute
a single-sample t-test, that is, a test for significant differences from zero:

ttest -0 pvalues.nii ——tstats-file tstats.nii JjacobianAl.nii jacobianA2.nii

2.9 Atlas-based Segmentation

Atlas-based segmentation uses correspondence between a previously segmented image (the atlas) and a
new, unsegmented image to create a segmentation of the latter [16]. This relatively simple idea can easily
be implemented using CMTK’s registration , warp, and reformatx tools. For convenience, however,
CMTK also provides an integrated atlas-based segmentation tool, which can be run as follows:

asegment input_image.nii atlas_image.nii atlas_labels.nii output_labels.nii

Here, it is assumed that input_image.nii is a new, unsegmented image, for example an MR scan of a new
subject, atlas_image.nii is the intensity image of the atlas, and atlas labels.nii is the label image of
the atlas, i.e., the segmentation corresponding to the atlas intensity image. The tool will then register the atlas
to the new image, reformat that atlas label map onto it, and write the result to the file output_labels.nii

The standard atlas of CMTK is the SRI24 atlas [23, 24], which comprises several different channels of
MR image information, as well as scalar diffusion measures, tissue probability maps, and segmentation
maps. If CMTK is configured and built with SRI24 support (by setting the CMTK_ROOT_PATH_SRI24 CMake
variable), then a simplified segmentation tool, asegment_sri24 , which uses the SRI24 atlas is also built.

This tool, by default, registers a given image to the SPGR channel of the SRI24 atlas. It then creates
and writes a segmentation map based on the “tzol16plus” label map, which derived from the “automatic
anatomic labelling” (AAL) parcellation map by Tzourio-Mazoyer et al. [30]. This is achieved simply by
running

asegment_sri24 input_image.nii output_segmentation.nii

Different atlas channels can be used for registration, selected using the —-registration-channel com-
mand line option: “spgr ” for T1-weighted SPGR, which is the default,“early-fse ” for early-echo (proton
density-weighted) FSE , “late-fse ” for late-echo (T2-weighted) FSE, and “fa” for DTI-derived fractional
anisotropy.

2.9 Atlas-based Segmentation 15

| il 3D Slicer Version 3.4
5,

File Edit ¥iew Mindow Help Feedback

todules: Seamentution using SRI24 aties = E E st

1
E 3DSlicer }l-= fkiﬂ

¥ Help & &cknowledgement I

ment. Volume

* Segmentation Using SRI24 Atlas
Farameter set| sagmantation using SRIZ4 atlas

Status Idle

= General

Targetimage | nn3n_n9162008_spgr_brain

Outputinage | Segmentation using SRIZ4 atlas Volume i
fast _ i
registration_channel (8 spgr] early-fse [late-fse [fa Sagitfel Mone l Caronal Hang
label_nap [tz0118plus [pbad0 [fissus | seament.votne — ||[8] boz0_09..trn |] sament.voume 1030_08.._brin
Default | cancel | | apply B TR B o

= Manipulate Slice Views

EEDDEEEEEE T

* Manipulate 30 Yiew

Figure 6: Integration of asegment _sri24 tool into 3D Slicer, and result of segmentation using the
“tzolleplus ” label map.

Likewise, different label maps are available for the output, selected by the ——label-map command line
option: “tzolléplus ” for the extended Tzourio-Mazoyer map, “lpbad0 ” for a segmentation based on the
40-subject LONI Probabilistic Brain Atlas [27] (LPBA40), and “tissue ” for a maximum-likelihood three-
tissue (CSF, WM, GM) segmentation.

The integration of a complete atlas-based segmentation workflow with a pre-defined atlas is particularly
convenient when using CMTK’s tools from within the 3D Slicer software. Fig. 6 shows an example of
the Slicer-generated user interface for the asegment_sri24 tool, as well as the result of an atlas-based
segmentation using the “tzolléplus ~ label map.

16

3 Atlas Construction

In addition to being useful for atlas-based segmentation, CMTK also provides tools that can be used in the
construction of atlases. Indeed, its tools have been used to create several published brain atlases of humans
and different insect species.

3.1 Averaging Pairwise Correspondences

Based on pairwise registrations between images in a group and a single selected reference image, an atlas
can be created as the average intensity image deformed by the inverse average deformation [§].

As CMTK’s warp tool computes nonrigid transformations based on the B-spline free-form deformation
model, computing the average deformation field is related to the concept of the Active Deformation Model
(ADM) introduced by Frangi et al. [6, 7]. The tool to compute the average image in average coordinates is,
somewhat consequently, called avg _adm. A typical processing sequence using this tool for averaging five
images would first compute (using warp) the nonrigid transformations from a selected reference to the other
images, then apply avg _adm to compute the actual average:

warp -0 xform0l img0.nii imgl.nii
warp —o xform02 img0.nii img2.nii
warp -0 xform03 img0.nii img3.nii
warp -0 xform04 img0.nii img4.nii
avg_adm -o atlas.nii xform0l xform02 xform03 xform04

CMTK’s tools have been used in this way to create a registration template for a study of the olfactory system
of the fruit fly [9].

3.2 lterative Shape Averaging

The iterative shape averaging (ISA) procedure [20] was first used to create a standard atlas of the honeybee
brain [4], and has since been applied to other insect species as well [10, 11].

CMTK provides a shell script, iterative _shape _averaging.sh , that largely automates the iterative av-
eraging process. To average three images, one of which has been selected as the initial reference image, this
script can be called as follows:

sh iterative_shape averaging.sh ref image.nii flt_imagel.nii flt_image2.nii

3.3 Groupwise Population Registration

Direct groupwise registration avoids the need to select an image as the (initial or final) reference and is,
therefore, considered unbiased with respect to such choice.

CMTK implements a groupwise registration algorithm called “congealing” [12], both using the affine and
the B-spline FFD transformation models [3]. Alternatively, a groupwise image similarity measure based on
Regional Mutual Information [26] is also supported.

The two command line tools, groupwise _affine and groupwise _warp were used, among other applica-
tions, to create the publicly available SRI24 atlas of normal human brain anatomy [23, 24].

3.3 Groupwise Population Registration 17

A good workflow example to start experimenting with CMTK’s groupwise registration tools might be as
follows for three input images, imagel.nii through image3.nii

Initialize three-image groupwise alignment using centers of mass
groupwise init -O groupwise/initial -v -—align-centers-of-mass \
imagel.nii image2.nii image3.nii

Affine groupwise registration with zero-sum transformation parameters
over all images. Use 20% stochastic sampling density for speed.
Use ‘‘RMI’’-based similarity measure; sometimes more robust for affine.
groupwise affine ——rmi -O groupwise/affine -v --match-histograms \
—dofs 6 —dofs 9 ——zero—sum \
——downsarple-from 8 —-downsample-to 1 --exploration 8 -a 0.5 \
——sampling-density 0.05 ——force-background 0 \
groupwise/initial/groupwise_init.xforms

Nonrigid (B-spline) groupwise registration using ‘‘congealing’’ criterion.

Start with approx. 40mm control point grid (fitted to image FOV), refine 5

times, and force displacements to be zero-sum over all images (not

considering the global affine transformation component).

groupwise_warp --congeal -O groupwise/warp —-v ——match-histograms ——histogram-bins 32 \
——grid-spacing 40 --grid-spacing-fit --refine-grid 5 --zero-sum-no-affine \
——downsample-from 8 ——downsample-to 1 —exploration 6.4 ——accuracy 0.1 \
——force-background 0 groupwise/affine/groupwise rmi.xforms

18

4 More Gory Details

4.1 Registration Options for Image Pre-Processing

Both the affine and nonrigid pairwise image registration, registration and warp , support a number of pre-
processing operations that can be applied to the reference and floating image on-the-fly, prior to registration.
The most commonly used of these are:

e Data Class: For each image, the “class” of the image data can be defined. This can be “grey,” “binary,”
or “label.” Typically, both images should have data in the same class. When the data class is set to
“label,” the registration algorithm uses nearest neighbour instead of trilinear interpolation, and the
numbers of histogram bin are set to the number of labels in each image rather than being adjusted
based on the intensity range and number of pixels.

e Thresholding: Upper and lower thresholds can be defined to truncate the image intensities.

e Cropping: Images can be cropped, based on either image index ranges or image coordinate ranges.
The registration tool implements a volume clipping algorithm [19] that considerably speeds up
registration of cropped images. Cropping can also improve registration accuracy and robustness by
excluding non-informative areas of the images.

e Histogram Pruning: For a given number of histogram bins (128 is typically a good value), this op-
eration truncates the intensity range of the image such that both the lowest and the highest histogram
bin receive 1/NumberOfBins of the total number of image samples. This is quite effective to prevent
degeneration of histograms by extreme image intensities due to noise.

Histogram Matching: Using the ——match-histograms option, the intensities of the floating image can be
rescaled to match the distribution of the reference image. This is a common pre-processing operator to
allow, for example, registration of inter-subject images using the mean squared differences metric.

Setting value outside FOV: A default value for data outside the floating image FOV can be defined using
the ——force-outside-value option. This artificially increases the overlapping image region that can be
considered for registration, which may help increase registration robustness.

4.2 GPU-Accelerated Tools

Starting with the 1.4 release series, CMTK is adding support for accelerating computations using general-
purpose graphics processing units (GPGPU). As of release 1.4.2, GPU support is available for level set
segmentation, , MR bias field correction, and image symmetry plane computation.

For the time being, GPU support is limited to the nVidia CUDA programming model, but OpenCL may be
supported in future releases. The command line tools that provide CUDA support are distinguished from
their CPU-only counterparts by the suffix “_cuda ” such that the GPU-analog for the mrbias tool would be
mrbias _cuda . We chose to separate CPU and GPU tools so that both could be built jointly on a system with
GPU hardware and drivers, but the CPU tools could still be used on a system without these capabilities.

Note that while every effort is made to keep the command line syntax and semantics identical for CPU and
GPU tools, this is not always fully possible.

References 19

Acknowledgments

Much of the effort required to get CMTK ready for release as open source software was performed by
Mike Hasak at SRI. Calvin R. Maurer, Jr., wrote the original implementation of his linear-time algorithm
for the Euclidean distance transform [15], which cmtk: :UniformDistanceMap is based on, and kindly
agreed to distribution of this derived code under the GPL. Likewise, Daniel Russakoff kindly agreed to GPL
licensing of code he wrote for entropy computation based on covariance matrices, as he used it in his work
on Regional Mutual Information [26]. Greg Jefferis provided numerous bug reports and fixes, including
much of the details required to get CMTK compiled and working on the MacOS platform.

References

[1] N. M. Alpert, J. F. Bradshaw, D. Kennedy, and J. A. Correia. “The principal axes transformation — a
method for image registration.” Journal of Nuclear Medicine, 31(10):1717-1722, 1990. 2.4

[2] J. Ashburner, C. Hutton, R. Frackowiak, I. Johnsrude, C. Price, and K. Friston. “Identifying global
anatomical differences: Deformation-based morphometry.” Human Brain Mapping, 6(5-6):348-357,
1998. http://dx.doi.org/10.1002/ (SICI)1097-0193(1998) 6:5/6<348: :ATD-HBMA>3.0.CO;

2-P. 2.7

[3] S. K. Balci, P. Golland, M. Shenton, and W. M. Wells. “Free-form B-spline deformation model for
groupwise registration.” In “MICCAI 2007 Workshop Statistical Registration: Pair-wise and Group-
wise Alignment and Atlas Formation,” pp. 23-30. 2007. 3.3

[4] R. Brandt, T. Rohlfing, J. Rybak, S. Krofczik, A. Maye, M. Westerhoff, H.-C. Hege, and R. Men-
zel. “Three-dimensional average-shape atlas of the honeybee brain and its applications.” Journal
of Comparative Neurology, 492(1):1-19, 2005. http://dx.doi.org/10.1002/cne.20644 . PMID
16175557. 3.2

[5] T. F. Chan and L. A. Vese. “Active contours without edges.” IEEE Transactions on Image Processing,
10(2):266-277, 2001. http://dx.doi.org/S1057-7149 (01) 00819-3 .23

[6] A.F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen. “Automatic 3D ASM construction via
atlas-based landmarking and volumetric elastic registration.” In M. F. Insana and R. M. Leahy (eds.),
“Information Processing in Medical Imaging: 17th International Conference, IPMI 2001, Davis, CA,
USA, June 18-22, 2001, Proceedings,” vol. 2082 of Lecture Notes in Computer Science, pp. 78-91.
Springer-Verlag, Berlin/Heidelberg, 2001. 3.1

[7]1 A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen. “Automatic construction of multiple-
object three-dimensional statistical shape models: application to cardiac modeling.” IEEE Transac-
tions on Medical Imaging, 21(9):1151-1166, 2002. 3.1

[8] A. Guimond, J. Meunier, and J.-P. Thirion. “Average brain models: A convergence study.” Computer
Vision and Image Understanding, 77(2):192-210, 2000. http://dx.doi.org/10.1006/cviu.1999.
0815. 3.1

[9] G.S. Jefferis, C. J. Potter, A. M. Chan, E. C. Marin, T. Rohlfing, C. R. Maurer, Jr., and L. Luo. “Com-
prehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone
representation.” Cell, 128(6):1187-1203, 2007. PMID 17382886, PMC 1885945. 3.1

http://dx.doi.org/10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO;2-P
http://dx.doi.org/10.1002/cne.20644
http://dx.doi.org/S 1057-7149(01)00819-3
http://dx.doi.org/10.1006/cviu.1999.0815
http://dx.doi.org/10.1006/cviu.1999.0815

References 20

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. E. Kurylas, T. Rohlfing, S. Krofczik, A. Jenett, and U. Homberg. “Standardized atlas of the brain
of the desert locust, schistocerca gregaria.” Cell and Tissue Research, 333(1):125-145, 2008. http:
//dx.doi.org/10.1007/s00441-008-0620-x . PMID 18504618. 4, 3.2

P. Kvello, B. B. Lgfaldli, J. Rybak, R. Menzel, and H. Mustaparta. “Digital, three-dimensional average
shaped atlas of the heliothis virescens brain with integrated gustatory and olfactory neurons.” Frontiers
in Systems Neuroscience, 3, 2009. http://dx.doi.org/10.3389/neuro.06/014.2009 . 3.2

E. G. Learned-Miller. “Data driven image models through continuous joint alignment.” /EEE Trans-
actions on Pattern Analysis and Machine Intelligence, 28(2):236-250, 2006. http://dx.doi.org/
10.1109/TPAMI.2006.34 .33

B. Likar, M. A. Viergever, and F. Pernus. “Retrospective correction of MR intensity inhomogeneity
by information minimization.” IEEE Transactions on Medical Imaging, 20(12):1398-1410, 2001.
http://dx.doi.org/10.1109/42.974934 .23

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. “Multimodality image registra-
tion by maximisation of mutual information.” IEEE Transactions on Medical Imaging, 16(2):187-198,
1997. 2.4,2.6

C. R. Maurer, Jr., R. Qi, and V. Raghavan. “A linear time algorithm for computing exact Euclidean
distance transforms of binary images in arbitrary dimensions.” /EEE Transactions on Pattern Analysis
and Machine Intelligence, 25(2):265-270, 2003. 4.2

M. 1. Miller, G. E. Christensen, Y. Amit, and U. Grenander. ‘“Mathematical textbook of deformable
neuroanatomies.” Proceedings of the National Academy of Sciences of the U.S.A., 90(24):11944—
11948, 1993. 2.9

A. Roche, G. Malandain, X. Pennec, and N. Ayache. “The correlation ratio as a new similarity measure
for multimodal image registration.” In W. M. Wells, IIL., A. C. E. Colchester, and S. Delp (eds.),
“Medical Image Computing and Computer-Assisted Intervention - MICCAI’98, First International
Conference, Cambridge, MA, USA, October 11-13, 1998, Proceedings,” vol. 1496 of Lecture Notes in
Computer Science, pp. 1115-1124. Springer-Verlag, 1998. 2.4

T. Rohlfing. Multimodale Datenfusion fiir die bildgesteuerte Neurochirurgie und Strahlentherapie.
Ph.D. thesis, Technische Universitit Berlin, 2000. 2.4

T. Rohlfing. “Incremental method for computing the intersection of discretely sampled m-dimensional
images with n-dimensional boundaries.” In M. Sonka and J. M. Fitzpatrick (eds.), “Medical Imaging:
Image Processing,” vol. 5032 of Proceedings of SPIE, pp. 1346-1354. 2003. http://dx.doi.org/
10.1117/12.483556 . 4.1

T. Rohlfing, R. Brandt, C. R. Maurer, Jr., and R. Menzel. “Bee brains, B-splines and computational
democracy: Generating an average shape atlas.” In L. Staib (ed.), “IEEE Workshop on Mathematical
Methods in Biomedical Image Analysis,” pp. 187-194. IEEE Computer Society, Los Alamitos, CA,
Kauai, HI, 2001. ISBN 0-7695-1336-0. http://dx.doi.org/10.1109/MBIA.2001.991733 .32

T. Rohlfing and C. R. Maurer, Jr. “Nonrigid image registration in shared-memory multiprocessor envi-
ronments with application to brains, breasts, and bees.” IEEE Transactions on Information Technology
in Biomedicine, 7(1):16-25, 2003. PMID 12670015. 2.5

http://dx.doi.org/10.1007/s00441-008-0620-x
http://dx.doi.org/10.1007/s00441-008-0620-x
http://dx.doi.org/10.3389/neuro.06/014.2009
http://dx.doi.org/10.1109/TPAMI.2006.34
http://dx.doi.org/10.1109/TPAMI.2006.34
http://dx.doi.org/10.1109/42.974934
http://dx.doi.org/10.1117/12.483556
http://dx.doi.org/10.1117/12.483556
http://dx.doi.org/10.1109/MMBIA.2001.991733

References 21

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

T. Rohlfing, M. H. Rademacher, and A. Pfefferbaum. “Volume reconstruction using inverse interpola-
tion: application to interleaved image motion correction.” In D. Metaxas, L. Axel, G. Fichtinger, and
G. Székely (eds.), “Medical Image Computing and Computer-Assisted Intervention — MICCAI 2008.
11th International Conference, New York, NY, USA, September 6-10, 2008, Proceedings, Part I,” vol.
5241 of Lecture Notes in Computer Science, pp. 798-806. Springer-Verlag, Berlin/Heidelberg, 2008.
http://dx.doi.org/10.1007/978-3-540-85988-8_95 . PMID 18979819, PMC 2646840. 2.2

T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum. ‘“The SRI24 multi-channel brain atlas:
Construction and applications.” In J. M. Reinhardt and J. P. W. Pluim (eds.), “Medical Imaging 2008:
Image Processing,” vol. 6914 of Proceedings of SPIE, p. 691409. Bellingham, WA, 2008. http:
//dx.doi.org/10.1117/12.770441 . PMID 19183706, PMC 2633114. 2.9, 3.3

T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum. “The SRI24 multichannel atlas of normal
adult human brain structure.” Human Brain Mapping, 31(5):798-819, 2010. http://dx.doi.org/
10.1002/hbm.20906 . PMID 20017133. 2.9, 3.3

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. “Nonrigid
registration using free-form deformations: Application to breast MR images.” IEEE Transactions on
Medical Imaging, 18(8):712-721, 1999. 2.5

D. B. Russakoff, C. Tomasi, T. Rohlfing, and C. R. Maurer, Jr. “Image similarity using mutual in-
formation of regions.” In “Computer Vision - ECCV 2004: 8th European Conference on Computer
Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part II1,” vol. 3023 of Lecture Notes
in Computer Science, pp. 596-607. Springer-Verlag, Berlin/Heidelberg, 2004. 3.3, 4.2

D. W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon, K. L. Narr, R. A. Poldrack,
R. M. Bilder, and A. W. Toga. “Construction of a 3D probabilistic atlas of human cortical struc-
tures.” Neurolmage, 39(3):1064—1080, 2008. http://dx.doi.org/10.1016/7.neuroimage.2007.

09.031 . 2.9

C. Studholme, D. L. G. Hill, and D. J. Hawkes. “Automated three-dimensional registration of magnetic
resonance and positron emission tomography brain images by multiresolution optimization of voxel
similarity measures.” Medical Physics, 24(1):25-35, 1997. 2.4

C. Studholme, D. L. G. Hill, and D. J. Hawkes. “An overlap invariant entropy measure of 3D med-
ical image alignment.” Pattern Recognition, 32(1):71-86, 1999. http://dx.doi.org/10.1016/
S0031-3203(98) 00091-0 .24

N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer,
and M. Joliot. “Automated anatomical labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain.” Neurolmage, 15(1):273-289, 2002. http://dx.
doi.org/10.1006/nimg.2001.0978 .29

W. M. Wells, P. A. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. “Multi-modal volume registration
by maximization of mutual information.” Medical Image Analysis, 1(1):35-51, 1996. http://dx.
doi.org/10.1016/S1361-8415(01)80004-9 .24

http://dx.doi.org/10.1007/978-3-540-85988-8_95
http://dx.doi.org/10.1117/12.770441
http://dx.doi.org/10.1117/12.770441
http://dx.doi.org/10.1002/hbm.20906
http://dx.doi.org/10.1002/hbm.20906
http://dx.doi.org/10.1016/j.neuroimage.2007.09.031
http://dx.doi.org/10.1016/j.neuroimage.2007.09.031
http://dx.doi.org/10.1016/S0031-3203(98)00091-0
http://dx.doi.org/10.1016/S0031-3203(98)00091-0
http://dx.doi.org/10.1006/nimg.2001.0978
http://dx.doi.org/10.1006/nimg.2001.0978
http://dx.doi.org/10.1016/S1361-8415(01)80004-9
http://dx.doi.org/10.1016/S1361-8415(01)80004-9

Index
3D Slicer software, 6, 15

Artifacts
intensity bias field, 8
motion, 8

Atlas
AAL template, 14
construction, 16
LPBA40, 15
SRI24, 14, 16

CMTK
licensing, 3
CMTK Tools
asegment , 14
avg _adm, 16
dem2image , 7
film, 8

groupwise _warp, 16
groupwise _affine , 16
make _initial _affine , 11

mrbias , 8

reformatx , 12

registration , 8, 18

ttest , 13

warp, 11, 16, 18
Coordinate system, 3

degrees of freedom, 11
DICOM, 7

GPU, 18
CUDA, 18
OpenCL, 18

GUI

aligned image pair viewer, 12
triplanar image viewer, 3

Image
fixed, 5
floating, 5
interleaved MR, 8
moving, 5
reference, 5

Jacobian

determinant maps, 13

registration constraint, 12

Registration

affine, 11
groupwise, 16
nonrigid, 11
pairwise, 5, 8
principal axes, 11
terminology, 5

Segmentation

atlas-based, 14
level set, 8, 18

	Introduction
	Coordinate Conventions
	Registration Terminology
	Supported Image File Formats
	Toolkit-Global Command Line Options

	Step-by-Step Morphometry
	DICOM Image Stacker
	Interleaved Image Motion Artifact Correction
	MR Intensity Bias Field Correction
	Affine Image Registration
	Nonrigid Image Registration
	Reformating Registered Images
	Jacobian Determinant Maps
	Statistical Testing
	Atlas-based Segmentation

	Atlas Construction
	Averaging Pairwise Correspondences
	Iterative Shape Averaging
	Groupwise Population Registration

	More Gory Details
	Registration Options for Image Pre-Processing
	GPU-Accelerated Tools

	Index

