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Abstract. This paper presents a method for deformable registration of diffusion 

tensor (DT) images that integrates geometry and orientation features into a hier-

archical matching framework. The geometric feature is derived from the struc-

tural geometry of diffusion and characterizes the shape of the tensor in terms of 

prolateness, oblateness, and sphericity of the tensor. Local spatial distributions 

of the prolate, oblate, and spherical geometry are used to create an attribute vec-

tor of geometric feature for matching. The orientation feature improves the 

matching of the WM fiber tracts by taking into account the statistical informa-

tion of underlying fiber orientations. This attribute vector is incorporated into a 

hierarchical deformable registration framework to develop a diffusion tensor 

image registration algorithm. Extensive experiments on simulated and real brain 

DT data establish the superiority of the features for deformable matching of dif-

fusion tensors, thereby aiding in atlas creation. The robustness of the method 

makes it potentially useful for group-based analysis of DT images acquired in 

large studies to identify disease-induced and developmental changes.  

Keywords: Diffusion tensor imaging, structural geometry, tensor orientation, 

attribute vector, deformable registration. 

1 Introduction 

Diffusion tensor imaging (DTI) has emerged as a powerful and effective technique for 

analyzing the underlying white matter structure of brains [1]. DTI provides unique mi-

cro-structural and physiological insight into white matter tissue of brains, which in 

turn facilitates the study of development, aging, and disease on specific white matter 

regions of interest. In order to carry out group-based analysis and statistics, it is im-

perative to make different subjects comparable, thus requiring the spatial normaliza-

tion of diffusion tensor (DT) images. However, spatial normalization of DT images is 

rendered challenging by the fact that the data representation is high dimensional and it 

requires not only the spatial warping, but also the tensor reorientation at each voxel [2, 

3]. Recent advances in DT image normalization either employed a combination of dif-

ferent scalar maps derived from full tensor image for a multi-channel registration [4], 

or developed registration algorithms based on the full tensor similarity measurements 

[5, 6]. However, the normalization based on features extracted from full tensors has 

not been extensively researched yet. An earlier study applied oriented 3-D Gabor fea-

tures extracted from tensors for matching [7], while a recent method employed major 

fiber bundles to align tensors[8]. Both methods demonstrate that registration accuracy 



can be improved and better correspondence can be obtained in the white matter if fea-

tures that characterize both tensor shape and orientation are used for matching with 

carefully chosen metrics. 

In this paper, we design a feature vector that incorporates tensor geometry and ori-

entation features for DTI registration. We capitalize on the structural geometry of the 

diffusion tensor [9] and develop a novel attribute vector consisting of geometric mo-

ments computed from the local spatial histograms of tensor geometric measures. In 

order to improve the registration accuracy of white matter (WM) fiber tracts, we also 

incorporate the local statistical information of underlying fiber orientations into the at-

tribute vector. This attribute vector is rotationally invariant, and integrates spatial in-

formation from local histograms computed at different scales. We include this attrib-

ute vector into a hierarchical deformable registration technique on the lines of [10], to 

develop a deformable registration method for diffusion tensor images. Extensive ex-

periments demonstrate the robustness and accuracy of DT image registration using the 

proposed feature vector.  

2 Methods 

Let 0321 ≥≥≥ λλλ  be the three eigenvalues of a symmetric tensor D , and 
i

ê  be the 

normalized eigenvector corresponding to 
i

λ , then the tensor D  can be denoted by 
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Geometrically, tensor D  can be represented by an ellipsoid with three axes oriented 

along its three eigenvectors, and three semi-axis lengths proportional to the square 

root of its three eigenvalues. Different shapes of the ellipsoid give rise to three geo-

metric structures of diffusion tensors: prolate (linear) structure, in which diffusion is 

mainly in the direction corresponding to 1ê ; oblate (planar) structure, in which diffu-

sion is restricted to a plane spanned by 1ê  and 2ê ; and spherical structure with iso-

tropic diffusion. Three geometric measures were proposed in [9] to describe how 

close the diffusion tensor is to the generic structures of prolateness, oblateness, and 

sphericity. They are respectively defined as  
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2.1 Tensor geometric feature for matching 

A discriminative attribute vector is defined at each voxel from the geometric measures 

in (2). This attribute vector characterizes the local diffusion property by combining the 

local distributions of prolate, oblate, and spherical structures. For a specified voxel v , 

local histograms )(vlh  of 
lc , )(vph  of 

pc , and )(vsh  of 
sc  are computed from a 

spherical neighborhood region of voxel v  with a given appropriate radius r . These 



histograms roughly characterize the distribution of the tensor geometry in the 

neighborhood region. For each histogram, we compute its regular geometric moments 

as the statistical geometric features, i.e.  

;,,,),(),( splkivinvm
i k

n

k ==∑ h  (3) 

where ),( ivkh  is the frequency of index i  in histogram )(vkh , and ),( nvmk  is the 

nth order moment of this histogram. Low-order geometric moments are used to repre-

sent the geometric features for a histogram and form a vector as 
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In order to improve the accuracy of matching, we include the boundary attribute 

)(vb
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FA  of fractional anisotropy (FA) and the boundary attribute )(vb
bound

ADC  of appar-

ent diffusion coefficient (ADC) into the attribute vector. These boundary attributes are 

computed by a Canny edge detector [11] from FA and ADC scalar maps of DT image 

respectively. Therefore, the complete attribute vector at voxel v  can be represented as 
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Since the histograms for computing the geometric features are generated from a 

spherical region, they are invariant to a rotational transformation. Therefore, the at-

tribute vector defined in (5) is rotationally invariant, which makes it attractive for reg-

istration. To make the feature vector more discriminative, the above attribute vector is 

computed at three different scales so that both global and local geometric features are 

accounted for. In each scale, the similarity of two attribute vectors, )(ua  and )(va , of 

two points, u  and v , is defined as 
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where )(⋅ia  is the ith element in the attribute vector. 

  
      (a)                          (b)                      (c)                        (d)                        (e)            

Fig. 1. Similarity of the points on major fiber tracts. The attribute vector of the crossed point in 

(a) is compared with the attribute vectors of other points in the image. (b) and (c) show the re-

sulting map of similarities using the geometric feature computed at a coarse scale and a fine 

scale, respectively. (e) and (f) show the resulting map of similarities using the FA feature com-

puted at a coarse scale and a fine scale, respectively. Red indicates high similarity. 

We demonstrate the discriminatory power of the proposed attribute vector of geo-

metric feature in Figs. 1 and 2 by comparing it with the FA feature [10] for diffusion 



tensor matching. Both points in major fiber tracts and small tracts have been exam-

ined. From the color-coded maps of similarities illustrated in Figs. 1 and 2, we can 

conclude that the geometric feature is much more discriminative than just using FA 

feature on both major and small fiber tracts (even on a single scale), with geometric 

feature being far superior on the smaller tracts.  

 

  
     (a)                          (b)                        (c)                       (d)                       (e)   

Fig. 2. Similarity of the points on small fiber tracts. Legends are the same as those in Fig. 1.  

2.2 Fiber orientation feature for matching 

Properly aligning WM fiber tracts is a major concern in DTI registration. In order to 

further improve the registration accuracy of WM fiber tracts, we incorporate the local 

statistical information of underlying fiber orientations into the attribute vector defined 

in (5). The fiber orientation at voxel v  is approximated by the principal direction 

(PD) of tensor D  weighted by the FA value at this voxel.  Local spatial distribution of 

PD in the 3D space at voxel v , denoted by )(vPDH , can be estimated from the sam-

ples in a spherical neighborhood region with a radius r . Therefore, the similarity of 

two points, u  and v , in terms of local PD distribution can be defined as the normal-

ized mutual information (NMI) of )(uPDH  and )(vPDH  as 
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where E denotes the joint or marginal differential entropy of the random variables of 

local PD distribution. The similarity of the attribute vectors with the orientation fea-

tures at points u  and v  is then determined by the combination of Eqs. (6) and (7) as 

),())(),((),( vuNMIvumvuM PD⋅= aa . (8) 

),( vuM  ranges from 0 to 1 where 1 indicates the most similar attribute vectors.  

This new attribute vector including the orientation feature serves to further refine 

the matching of WM fiber tracts after the diffusion tensors are initially registered and 

reoriented using only the geometric feature. Since the PD of a tensor is meaningful 

only in the high anisotropic anatomies such as WM fiber tracts, we consider the orien-

tation feature only for those points with a high FA value.   



2.3 Deformable registration with geometry and orientation features 

The attribute vector described above is used in conjunction with the deformable tech-

niques on the lines of the HAMMER algorithm [10] to develop a DTI registration al-

gorithm. This algorithm employs a hierarchical structure to select distinct attribute 

vectors, thus reducing ambiguity in finding correspondences. The boundary attributes 

of FA and ADC maps are the criterion for choosing active points to drive the registra-

tion. In the initial stages of the matching procedure, only a few points with distinct 

boundary attributes are selected for matching in order to avoid local minima. As the 

matching progresses, more and more points with lower boundary strengths become re-

liable and thus are selected to drive the registration. The final spatial transformation is 

generated by concatenating the hierarchical sequence of piecewise smooth transforma-

tions obtained at each stage. The deformation field obtained as part of this spatial 

warping is used to determine the tensor reorientation, based on a spatially adaptive 

procedure that estimates the underlying fiber orientation [2], to produce properly ori-

ented tensors in the atlas space. 

3 Results 

We have demonstrated the high matching accuracy of the geometric feature in differ-

ent parts of the white matter fiber tracts in Figs. 1 and 2. In this section, we applied 

our method to register both human brains and mouse brains to demonstrate the effi-

ciency of our method by comparing with two alternative deformable registration algo-

rithms, HAMMER [10] and Demons algorithm [12] when applied to FA maps. For the 

sake of simplicity and fairness, we compare FA feature-based registration with the 

geometric feature, establishing the superiority of the latter. In the next stage we also 

demonstrate that the orientation feature together with the geometric feature improves 

the matching of the WM fiber tracts. 

3.1 Matching accuracy comparison: geometric feature and FA feature 

Ten simulated human brain DT images are generated by applying ten simulated de-

formation fields [13] to warp a template DT image. These ten simulated DT images 

are then registered back to the template space by using the attribute vector of geomet-

ric feature and FA feature, respectively. The deformation errors between the registra-

tion results and the simulated ground truth are calculated for both features. Fig. 3 

shows the average registration error and the variance in each subject computed from 

the whole brain and WM fiber tracts, respectively. It demonstrates that using the geo-

metric feature yields more accurate registration than using the FA feature, with respec-

tive population means as 0.89 voxels and 1.11 voxels for the whole brain. Comparing 

Figs. 3(a) and (b) shows the registration to be superior in the WM fiber tracts. The re-

spective population means using geometric feature and FA feature are 0.75 voxels and 

0.93 voxels in the regions with FA > 0.25.  



Comparison of Accuracy of Registrations (whole brain)

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Subjects

R
e
g

is
tr

a
ti

o
n

 E
rr

o
r 

 (
v
o

x
e
l)

Geometric Feature
FA Feature

Comparison of Accuracy of Registrations (FA>0.25)

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Subjects

R
e
g

is
tr

a
ti

o
n

 E
rr

o
r 

 (
v
o

x
e
l)

Geometric Feature
FA Feature

  
                                  (a)                                                                        (b) 

Fig. 3. Comparison of the registration accuracy using the geometric feature and FA feature. (a) 

shows the registration error computed from the whole brain, and (b) shows the registration er-

ror computed from WM fiber tracts with FA > 0.25. 

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Lankmark Points

R
e
g

is
tr

a
ti

o
n

 E
rr

o
rs

 (
m

m
)

Rater 1Our Method

Rater 1 Demons

Rater 2 Our Method

Rater 2 Demons

Rater Difference

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Lankmark Points

R
e
g

is
tr

a
ti

o
n

 E
rr

o
rs

 (
m

m
)

Rater 1 Our Method

Rater 1 Demons

Rater 2 Our Method

Rater 2 Demons

Rater Difference

  
                                       (a)                                                                       (b) 

Fig. 4. Comparison of the registration errors on each of 10 landmark points identified by two 

raters on both major and minor WM fiber tracts, in two subjects (a) and (b), respectively. 

3.2 DTI registration of human brains 

To further demonstrate the efficiency of our method, we apply it to register real hu-

man brain DT images and compare it with the demons algorithm, which is imple-

mented with ITK [14] and is applied to FA images. The same tensor reorientation 

scheme [2] is applied together with demons registration to produce the final warped 

DT image. Two subjects were registered to a template, each with voxel resolution as 

0.9375×0.9375×2.5 mm. We had two raters pick up 10 corresponding landmarks from 

each subject and template. These landmarks reside in both major and minor WM fi-

bers and serve to evaluate the matching accuracy. For each pair of corresponding 

landmarks, we compute the registration errors for our proposed method and the de-

mons algorithm. These results are shown in Fig. 4. We also show the variation be-

tween two raters for better understanding. Fig 4 shows that overall our method 

achieves more accurate and robust registration than the demons algorithm does. To 

visually observe the registration of WM fiber tracts, we demonstrate the overlaid WM 

fiber tracts in Fig 5. In Fig. 5, we compare the registered fiber tracts obtained from the 

demons algorithm, our method without adding the orientation feature described in 

Section 2.2, and our method with the added orientation feature. The results show that 



the registration with the orientation feature achieves the best matching of WM fiber 

tracts. 

 
                    (a)                               (b)                              (c)                                (d) 

Fig. 5. Comparison of the overlaid WM fiber tracts in 3D space. (a) shows the WM fiber tracts 

extracted from the template. (b), (c), and (d) show the overlaid fiber tracts extracted from regis-

tered DT images by the demons algorithm, our method without adding orientation feature, and 

our method with added orientation feature, respectively.  

 
                                (a)                                (b)                               (c) 

Fig. 6. Spatial normalization of 5 mouse brains. (a) Color map of the template. (b) Color map 

of the group averaged image. (c) Edges extracted from FA map of group averaged image super-

imposed on the FA map of template. 

3.3 Creating an atlas of murine brains 

We apply our method to spatially normalize 5 mouse brains scanned at Day 10 in or-

der to create an atlas for this development stage by group-averaging the normalized 

DT images. One subject is identified as the template and the others are registered to it 

using the proposed method. The group-averaged image is computed by voxel-wise av-

eraging the corresponding tensors in the individual warped subjects. Fig. 6 visually 

demonstrates the registration accuracy. The color map in Fig. 6 is the tensor PD 

weighted by the corresponding FA value. The color is encoded with green represent-

ing anterior-posterior, blue for feet-head, and red for left-right orientation. The sharp-

ness of the average in Fig. 6(b) as compared to the template in Fig. 6(a), as well as the 

good matching of the edge map to the underlying FA image in Fig. 6(c), shows that a 

good spatial normalization has been achieved and even the thin tracts like internal and 

external capsules have been aligned well.  



4 Conclusions 

In conclusion, we have presented a novel attribute vector that characterizes the ge-

ometry and orientation of diffusion tensors and hence obtains superior matching and 

subsequent deformable registration. The features are incorporated into a hierarchical 

deformable registration algorithm, and the orientation feature improves the matching 

of the WM fiber tracts. The extensive experiments verified the efficiency of the fea-

tures for matching of tensors and subsequently in obtaining a fully deformable regis-

tration framework for diffusion tensor images.  
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