
Generative Discriminative Basis Learning for

Medical Imaging: Software Manual

Nematollah Kayhan Batmanghelich, Andreas Schuh

June 12, 2012

Contents

1 Introduction 2

2 Package Contents 2

3 A Sample Case Study 3

4 Output Files 7

5 Important Notes 7

6 API Description 8

1

1 Introduction

This software implements Generative-Discriminative Basis Learning (GONDOLA),
which is explained in detail in paper [3] and extended later on in paper [2]. The-
oretical ideas are explained in these papers, but as a brief explanation, GONDOLA
provides a generative method to reduce the dimensionality of medical images while
using class labels. It produces basis vectors that are useful for classification and
also clinically interpretable.

When provided with two sets of labeled images as input, the software outputs
features in .arff format (Weka format [4]) and a .mat file (MATLAB file). The
program can also save basis vectors in .nii format (NIFTI format). Scripts are pro-
vided to find and build an optimal classifier using the Weka APIs. Prior knowledge
about basis vectors can be provided via ”group-wise” regularization that divides
voxels of an image into groups - or, in practice, a segmentation image. Currently,
only non-overlapping groups are supported. The software can also be used for
semi-supervised cases in which a number of subjects do not have class labels (for
an example, please see [3]).

To install and use this software, you must first meet the requirements explained
in the INSTALL.txt file. Note that all input images must first be registered to a
common template, and that any image format supported by ITK [1] can be used.
If you find this piece of software useful, please cite [3] and [2].

2 Package Contents

This package contains several binary and library files. Below, we have introduced
the bare minimum binaries or scripts that you need to be familiar with in order
to run the algorithm:

• bin/gondola-config : This script accepts a list of files, a list of correspond-
ing IDs and a set of experiment parameters, then generates an appropriate
folder structure and the required config files. Read the help file for more
detail.

• bin/gondola-ExperimentLauncher : To find out how well how well we can
generalize our results, the experiment must typically be repeated several
times (i.e. learning the basis, extracting the features and performing clas-
sification). This script manages entire experiments (e.g. all folds of 10-fold
cross validation) and provides correct arguments to GONDOLA in. It requires
as input another .config file describing the experiment; please read the
documentation of launchExperiment for more detail.

2

• bin/sgeExecLearning withMOSEK : This script is used to run experiments
in parallel on servers equipped with Sun Grid Engine (SGE). It must be
changed slightly to define the allocated memory, the number of CPU’s re-
quired, and the e-mail address to use when reporting the experiment’s progress.

• bin/gondola : This is the main executable, and provides the following func-
tions:

1. Learning: Perform optimized learning of the basis vectors (B) and
other parameters.

2. Feature Extraction: Project the images onto the basis vectors

3. Show: Output each basis as an independent image file.

Please see the documentation of each file for more detail.
For function bin/gondola , the program requires a .config file specifying

the algorithm parameters and outputs a MATLAB file (.mat file) containing the
optimization history and the values of B,C, and w.

NOTE: It is not typically necessary to run GONDOLA directly. A more intu-
itive wrapper script (bin/gondola-ExperimentLauncher) is included that calls
GONDOLA and provides the proper arguments.

3 A Sample Case Study

To start GONDOLA, first prepare an input ID list and an input image list. ID list
must only have the a short snippet of naming that is unique to an image, eg. a
prefix.

Example ID list:

$$> cat IDS.lst

R0186

R0178

R0179

R0139

R0014

R0009

R0037

R0185

The corresponding image list must include a list of images with the unique ID
incorporated in the filename. The image list is then organized in the COMPARE list
fashion.

COMPARE list format:

3

#[Subjects] \tab #[Modalities]

[x-dimension] \tab [y-dimension] \tab [z-dimension]

[Root path]

[Filepath relative to root SUBJECT 1 MODALITY 1] \tab [Filepath relative to root

SUBJECT 1 MODALITY 2] \tab [LABEL 1]

[Filepath relative to root SUBJECT 2 MODALITY 1] \tab [Filepath relative to root

SUBJECT 2 MODALITY 2] \tab [LABEL 2]

...

The reason for use of COMPARE list format is for backwards compatability of
input with many other SBIA tools.

Example image list:

$$> cat FILES.lst

8 2

96 113 94

/sbia/sbiaprj/autism/TobaccoCAR/RAVENSProcessed/

R0186_RAVENSmap.WM.nii.gz R0186_RAVENSmap.GM.nii.gz 1

R0178_RAVENSmap.WM.nii.gz R0178_RAVENSmap.GM.nii.gz 1

R0179_RAVENSmap.WM.nii.gz R0179_RAVENSmap.GM.nii.gz 1

R0139_RAVENSmap.WM.nii.gz R0139_RAVENSmap.GM.nii.gz 1

R0014_RAVENSmap.WM.nii.gz R0014_RAVENSmap.GM.nii.gz 2

R0009_RAVENSmap.WM.nii.gz R0009_RAVENSmap.GM.nii.gz 2

R0037_RAVENSmap.WM.nii.gz R0037_RAVENSmap.GM.nii.gz 0

R0185_RAVENSmap.WM.nii.gz R0185_RAVENSmap.GM.nii.gz 0

Note that class labels are positive integers for known class labels, and 0 for
unlabelled examples.

HINT: Class labels should be 1,2,3,... or 0.
These two lists then can be fed into gondola-config to generate an experiment

configuration file.
To build the experiment configuration file, enter the parameters and the input

ID and file list in the following fashion to gondola-config:
Example gondola-config:

$$> ./gondola-config -n 1708 -a MultiChannel_MultiView_BoxedSparsity_spg_Mosek

"lambda_gen:,lambda_disc:,lambda_const:,numBasisVectors: 10,0.1,0.2,30" -r

/sbia/comp_space/batmangn/Projects/gondola/results/ -m 5 -i ./IDS.lst -l

./FILES.lst

• -n :an experiment ID for the user to later identify the results related to this
given experiement

4

• -a :algorithm type

• -f :parameters. These must the entered in the following fashion “param1:,param2:,param3:
value1,value2,value3”

• -r :directory to put experiment files

• -m :number of folds for cross validation

• -i :ID list

• -l :File list

This command will create an experiment folder called exp1708 5foldCV in

/sbia/comp_space/batmangn/Projects/gondola/results

(specified in -r). Inside this folder, there will be 5 folders 1,2,3,4,5 and 2
files: exp1708.config and exp1708 5foldCV.config

The main config file exp1708.config will store the related parameters for
this experiment. Lambda gen is the generative term constraint, lambda disc

is the discriminative term constraint, lambda const is the sparsity constraint.
numBasisVectors is the number of basis vectors that will be attempted to be
found.

The cross-validation config file, exp1708 5foldCV.config will store parame-
ters related to the partitioned cross validation folds: training and testing sub-lists
paths, intermediate step result paths for the cross-validation, etc.

In a given cross-validation fold, subfolder, eg. 1 we will see:

$$> cd 1

$$> ls -1

ids_testing.lst

ids_training.lst

testing.lst

training.lst

To launch experiments, use .gondola-ExperimentLauncher with the gener-
ated configuration file, specifying the step to be performed.

In the following, we provide an example which runs gondola-ExperimentLauncher
step-by-step (-s STEP to be performed):

STEP 1: Learn the best basis vectors

$$> ./gondola-ExperimentLauncher -c

/sbia/comp_space/batmangn/Projects/gondola/results/exp1708_5foldCV/

exp1708_5foldCV.config -s 1

5

The learned basis vectors will be stored in each cross validation folder: exp1708 CV1 5.mat.
Also, the log file exp1708 CV1 5.log will be updated.

STEP 2: Extract features and save into an .arff file

$$> ./gondola-ExperimentLauncher -c

/sbia/comp_space/batmangn/Projects/gondola/results/exp1708_5foldCV/

exp1708_5foldCV.config -s 2

Extracted features using the previously learned basis elements will be saved in
each cross validation folder: training.arff and testing.arff.

STEP 3: Find the best parameters and save into .csv files

$$> ./gondola-ExperimentLauncher -c

/sbia/comp_space/batmangn/Projects/gondola/results/exp1708_5foldCV/

exp1708_5foldCV.config -s 3

Training cross validation will be employed to do a parameter search for classifiers,
(Random Forest, Simple logistic classifier, SMO, Logistic,and Optimal

Bayes). The parameters will be saved in each cross validation folder: bestParam.csv
STEP 4: Train the classifier with best parameters and apply to the training

and testing data

$$> ./gondola-ExperimentLauncher -c

/sbia/comp_space/batmangn/Projects/gondola/results/exp1708_5foldCV/

exp1708_5foldCV.config -s 4

The classifiers will be trained using the best parameters, and then the test data
will be classified. Results are saved in each cross validation folder:

• train-Logistic-Results.csv

• train-SMO-Results.csv

• train-Simple Logistic-Results.csv

• train-Bayesian-Results.csv

• train-Random Forest-Results.csv

• test-Logistic-Results.csv

• test-SMO-Results.csv

• test-Simple Logistic-Results.csv

6

• test-Bayesian-Results.csv

• test-Random Forest-Results.csv

STEP 5: Summarize and make a report

$$> ./gondola-ExperimentLauncher -c

/sbia/comp_space/batmangn/Projects/gondola/results/exp1708_5foldCV/

exp1708_5foldCV.config -s 5

This will generate summaries of all the cross-validation folds in the main experi-
ment folder. The summary of the experiment for each classifier is created in a text
file corresponding to each classifier:

• 1708-summary Bayesian.txt

• 1708-summary Logistic.txt

• 1708-summary Random Forest.txt

• 1708-summary SMO.txt

• 1708-summary Simple Logistic.txt

4 Output Files

• .mat file : The learned basis elements, B, for the input dataset is saved here
along with other parameters used in the algorithm.

• .arff files : The extracted features corresponding to the learned basis ele-
ments are stored here.

• bestParam.csv file : Best classifier parameters for, Bayesian, Logistic,

Random Forest, SMO, and Simple Logistic classifiers are learned here
using cross validation within training set.

• classifier results.csv files : For the above classifiers, training and testing
classification results are displayed.

5 Important Notes

7

6 API Description

8

References

[1] ITK:, http://www.itk.org

[2] Batmanghelich, N., Dong, A., Taskar, B., Davatzikos, C.: Regularized Tensor
Factorization for Multi-Modality Medical Image Classification. In: Fichtinger,
G., Martel, A.L., Peters, T.M. (eds.) MICCAI (3). Lecture Notes in Computer
Science, vol. 6893, pp. 17–24. Springer (2011)

[3] Batmanghelich, N.K., Taskar, B., Davatzikos, C.: Generative-discriminative
basis learning for medical imaging. IEEE Trans Med Imaging 31(1), 51–69
(Jan 2012), http://www.ncbi.nlm.nih.gov/pubmed/21791408

[4] Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learn-
ing Tools and Techniques. Morgan Kaufmann, Amsterdam, 3. edn. (2011),
http://www.sciencedirect.com/science/book/9780123748560

9

