
CBFDAP Web App Developer Guide

I. Burak Ozyurt

August 13, 2013

Contents

1 Overview 4
1.1 CBFDAP web app directory structure . 4
1.2 Packages Overview . 4
1.3 Configuration Files and Build Process . 7
1.4 Lifecycle operations . 7

1.4.1 Startup . 7
1.4.2 Shutdown . 8

2 Common Services 9
2.1 Security . 9
2.2 Connection Pool . 9
2.3 Data Access Layer . 10
2.4 LRU Image Cache Cleanup Service . 10
2.5 Remote Administration server . 10

3 Workflow Management 12
3.1 Job Scheduler . 12
3.2 Efficient Multiple CBF Processing Workflow Support 13

4 Consolidated Search Services 15
4.1 CBFDAP Search Framework . 15

5 Data Management 17
5.1 Assessment Management . 17

5.1.1 Score Values Display Layout Management . 17
5.2 Subject Management . 17

5.2.1 Adding a new subject . 17
5.2.2 Finding/Selecting a subject . 17

5.2.2.1 Details of manageSubjects action . 18
5.2.3 Subject Management Screen . 18
5.2.4 Segment Management . 18

5.3 Experiment Management . 18
5.3.1 Finding/Selecting an Experiment . 19
5.3.2 Study Group Management . 19

5.3.2.1 Adding a new Study Group . 19

6 Clinical Data Queries 20
6.1 Assessment Query Builder Wizard . 20
6.2 Transparent Handling of DBMS SQL differences in complex queries 20

1

CONTENTS 2

7 Subject Assessment Management 22
7.1 Reconciliation . 23
7.2 GAME . 23

7.2.1 AssessmentManagementHelper . 23
7.2.2 AssessmentManagementAction . 24

7.2.2.1 Hooking up a new assessment with the GAME 25

August 13, 2013

List of Figures

2.1 Security Service Class Diagram . 9
2.2 Multi-level Connection Pool Class Diagram . 10

3.1 Job Scheduler Class Diagram . 13
3.2 CBF Job Processing Sequence Diagram . 14

4.1 Query Aggregation Class Diagram . 16
4.2 Generalized Search Sequence Diagram . 16

7.1 Simplified class diagram for Subject Assessment Management 22

3

Chapter 1

Overview

1.1 CBFDAP web app directory structure

Under the root directory BIRN/clinical, you will find the following toplevel directories

• bin - where scripts and external binaries (mostly used for DICOM/AFNI conversion, Web
services deployment etc).

• conf - configuration files used by the application. Mostly configuration file templates, since
most of the configuration files are generated from templates combined with the ant question-
aire.

• lib - the third party libraries used.

• log - if configured application specific logging info will be saved here

• src - where the Java source code resides

• web - where the JSPs,images, JavaScript, CSS and web configuration files resides

1.2 Packages Overview

CBFDAP web app currently consists of 1390 Java classes under src directory, and 436 JSP files
under web/pages directory in the source distribution in CVS. CBFDAP web app uses Struts Tiles
templating framework. Nearly each JSP is accompanied with another JSP acting as the template
binder for its corresponding JSP going into body slot in the template. The packages organizing the
Java code are summarized below.

• clinical.web.workflow - Provides processing job implementations and related utility function-
ality

• clinical.web.workflow.cbf - Provides individual and group CBF processing job implementations

• clinical.web.workflow.cbf.group - Provides second level CBF group processing job implemen-
tations for baseline, ROI and standard space voxelwise group analysis.

• clinical.web.workflow.remote - Under construction. Will provide master-worker type remote
processing of jobs spread across multiple machines.

• clinical.web.workflow.common - Provides common utility functions for job processing

4

Packages Overview 5

• clinical.web.scheduler - Provides the implementation of job scheduler that managent all long
running tasks.

• clinical.comm - extended XML-RPC communication library used by remote administration

• clinical.exception - Provides exceptions used by the code generated data access layer classes.

• clinical.server - Provides data access layer, data transfer objects and some portions of session
facade layer serving the web application.

• clinical.server.dao - Provides data access object (DAO) interfaces (CRUD + QBE) for the
data access layer.

• clinical.server.dao.oracle - Oracle specific DAO interface implementation as generated by code-
gen application.

• clinical.server.dao.postgres - Postgres specific DAO interface implementation as generated by
codegen application.

• clinical.server.facade - Provides SRB image series and local file cache handling, subject/visit
details query session facade interfaces.

• clinical.server.image - Provides data access layer, data transfer objects and some portions of
session facade layer serving the web application.

• clinical.server.impl - Provides implementation of the session facade interface ImageHandler.

• clinical.server.upload - Old version of batch assessment/experiment data upload/ conversion/
conditioning functionality for UCSD Morph BIRN database.

• clinical.server.utils - Provides server side utilities for Oracle CLOB support.

• clinical.server.vo - Provides value objects for the UCSD Morph BIRN database manage-
ment/querying application(s).

• clinical.test - Provides unit tests using the Junit framework and Assessment Query functional
testing using the HttpUnit test framework.

• clinical.tools - Provides tools used to provide auxiliary functionality for the web application,
including installation tools.

• clinical.tools.install - Provides an installation tool to interactively create a users.xml file and
a custom Ant task for it.

• clinical.tools.maintenance - A simple Java scripting tool to create quick and database main-
tenance programs for specific tasks in java using the DAOs and VOs

• clinical.tools.dbadmin - Provides command line and GUI tools for managing different aspects
of the CBDDAP database.

• clinical.tools.dbadmin.migration - Provides a command line tool to migrate an experiment
from one CBFDAP database instance to another including all the associated image/job pro-
cessing data.

• clinical.tools.security -

• clinical.tools.security.server - Provides a simple server using extended XML-RPC as remote
procedure call mechanism for remote administration of the CBFDAP web app

August 13, 2013

Packages Overview 6

• clinical.tools.upload - Provides a tool for data curation and upload to the database. Mainly
used for UCSD ADRC data preparation/transformation and upload for MBIRN.

• clinical.upload - Provides batch assessment, experiment/visit uploading functionality with
data conversion and conditioning support UCSD ADRC data.

• clinical.upload.conditioner - Provides data conditioning support used when the raw data needs
filtering more involved than type conversion, one-to one mapping.

• clinical.utils - Provides generic utilities ranging from database connection pool with named
users, CSV parser, date arithmetic and formatting to name a few.

• clinical.web - Provides web based user interface for clinical assessment, derived data querying
and clinical subject data management functionality using Struts web framework.

• clinical.web.actions - Provides Struts web framework controller actions.

• clinical.web.common - Provides interfaces for the session facade for the business logic and
auxiliary services.

• clinical.web.common.query - Provides generic assessment, subcortical derived data query
building functionality and dynamic query building and processing for single tables.

• clinical.web.exception - Provides exceptions used by the presentation layer.

• clinical.web.forms - Provides Struts web framework form beans and helper objects for UCSD
Morph BIRN database user interface.

• clinical.web.game - Provides generic assessment management engine (GAME) support.

• clinical.web.game.forms - Provides Struts form beans as generated by the Clinical Assessment
Layout Management (CALM) tool.

• clinical.web.helpers - provides helper classes used mainly by struts actions.

• clinical.web.helpers.security - provides helper classes used for authentication and authoriza-
tion.

• clinical.web.image - Provides asynchronous DICOM to AFNI conversion coordinator.

• clinical.web.services - Provides generic assessment, subcortical derived data query building
functionality and dynamic query building and processing for single tables.

• clinical.web.soap - stats web service for Slicer

• clinical.web.tags - custom JSP tags

• clinical.web.tags.sec - Provides custom JSP tags for session expiration and user login checking
for site navigation, conditional execution of parts of JSP based on a user’s privileges.

• clinical.web.vo - Provides web tier side value objects used by Struts forms in transfering and
manipulation of presentation data.

• clinical.xml - XCEDE import/export web services support

• clinical.xml.export - XCEDE export web service

• clinical.xml.gui - provides a XCEDE export GUI web service client.

• clinical.xml.importer - XCEDE import web service (in development)

August 13, 2013

Configuration Files and Build Process 7

1.3 Configuration Files and Build Process

• conf/siteid map.properties - a lookup table of siteID - Site name map. Used to infer the site
for a subject from its subject ID due to the absence of an explict site ID for multi-site queries.

• conf/commons-logging.properties - properties file for Apache Commons Logging framework as
used by Struts (mainly setup to delegate for Log4j logging framework).

• log4j.properties.template - template file used by Ant to generate Log4j configuration file.

• conf/clinical.properties.template - template file CBFDAP web app specific properties used to
generate clinical.properties file from information gathered during Ant build questionaire. Any
updates to clinical that change what updates CBFDAP needs in order to function with this
version of clinical should have the minimum and maximum major and minor version numbers
changed in this file.

• conf/users.xml.example - example users.xml file for database, user and privileges configura-
tion. A users.xml file will be generated from information gathered during Ant build question-
aire by Ant.

• conf/as var map.xml.example - score/type mapping/conversion definition example file used
for multi-site queries, currently not used in fBIRN and might be broken since the result
combining logic used has changed dramatically.

• conf/resources/application.properties - resource file for externalized (parametrized) messages
like error messages, button labels etc.

For efficiency and as a development process aid the Ant generated configuration files are not regen-
erated the next time you run Ant. To force Ant to regenerate the configuration files, you just need
to delete the generated one. Do not make a permanent change in the generated configuration file.
Do the change in the template configuration file or always use Ant to build them for you through
the questionaire. If you make changes to the template file don’t check them in unless the change
will be applicable in a general manner.

1.4 Lifecycle operations

CBFDAP web app uses Struts as its web framework. As any J2EE application, HID web app
lives within an application server, which provides life cycle management for the application. Some
resources like connection pooling, cleanup services, remote administration etc need to be started
before the web app starts serving users and the resources/services used should be properly released
backed or closed when the application server (here the servlet container) shuts down.

1.4.1 Startup

The ServicesPlugin class implements Struts PlugIn interface for the lifecycle management. The init
method on ServicesPlugin class initializes this application when the Struts framework starts. The
initialization steps are as follows

• bootstrap Security Service

• prepare query processor global cache

• get the application specific properties and save them to application scope

August 13, 2013

Lifecycle operations 8

• initialize ServiceFactory

• initialize DAOFactory

• initialize the assessment variable mapping for quasi-mediator

• startup image file cache cleanup thread

1.4.2 Shutdown

The destroy method on ServicesPlugin class, shuts down the connection pool and the remote admin
server.

August 13, 2013

Chapter 2

Common Services

2.1 Security

CBFDAP web app has a simple application security mechanism, initiallly planned to be a place-
holder till a more advanced security mechanism (like PKI) that will be adopted IN BIRN. However,
it has survived till today and it is one of the parts of CBFDAP web app that may need enhancement.
The class diagram for Security services is shown in Figure 2.1. The class SimpleSecurityService im-
plements four security interfaces for authentication, authorization, run-as management for multi-site
queries and remote administration (from local remote client for user management). The security
service data is persisted along with the database connection parameters in an XML file namely
users.xml. The structure and semantics of the users.xml is specified in the users.xsd XML schema
file.

Figure 2.1: Security Service Class Diagram.

2.2 Connection Pool

CBFDAP web app provides a non-conventional two level connection pool to facilitate multi-site
queries and allow Oracle Label security. You can configure multiple (possibly remote) databases,
multiple named users per database and multiple database connections per named user allowing
multiple CBFDAP web app users to share the same named user. A simplified class diagram is
shown in Figure 2.2

9

Data Access Layer 10

Figure 2.2: Multi-level Connection Pool Class Diagram.

2.3 Data Access Layer

CBFDAP web app uses a code-generated Data Access Object (DAO) based simple object-to-
relational mapping strategy with query by example (QBE) as the main retrieval mechanism. Even
though QBE is not a very powerful approach, it was adequate enough for most of the data main-
tenance related queries. Multi-table complex queries are build by handcoded query builders using
an abstract syntax tree (AST) representation of the user query translated to native SQL from AST
representation. Also there is a query by criteria (QBC) service for single table complex queries
as provided by the implementation of the IQueryProcessor interface. The AbstractQueryProcessor
provides the common QBC functionality. The OracleQueryProcessor and PostgresQueryProcessor
provide Oracle and Postgres specific QBC functionality, respectively.

Transparent multiple database support for DAOs is provided by using abstract factory design
pattern. The DAOFactory class creates the corresponding DAO for the corresponding database type
for the provided database ID and returns the DAO interface instead of the actual implementation.

2.4 LRU Image Cache Cleanup Service

This is part of the service related image preview and retrieval from SRB. This functionality was for
early MBIRN and might be easily upgraded for other usage scenarios. However, currently it is not
adopted for fBIRN usage.

To increase response time under heavy load, a least recently used (LRU) file cache is used
in the middle tier server. The active class FileCacheCleanupService coordinates LRU file cache
mechanism by using external Perl scripts for the cache eviction etc. To assure proper concurrent
operation, during image series retrieval from SRB and DICOM to AFNI conversion, exclusive file
locks are used. To avoid race conditions during data streaming and cache cleanup, a read/write
lock mechanism is simulated with file locks. The cache eviction is based both on file age and size.

2.5 Remote Administration server

The goal of remote administration is to dynamically update/change or monitor system parameters
and security administration without bringing down the tomcat server. The remote administration
has two parts;

• the admin server running in the CBFDAP getCollectiveNameweb application (clients can
connect on port 11111)

August 13, 2013

Remote Administration server 11

• a remote admin client running in its own process space (i.e. as a standalone app different
than the CBFDAP web app).

The provided remote client is intentionally harcoded to work from the localhost (i.e. same machine
as the CBFDAP web app (clinical)) for security reasons. The admin server main class is is Ad-
minServer from clinical.tools.security.server package. AdminServer uses extended XML-RPC as
implemented in clinical.comm package for communication protocol with its clients.

Check REMOTE ADMIN SETUP GUIDE.txt for info on configuration and usage.

August 13, 2013

Chapter 3

Workflow Management

3.1 Job Scheduler

To handle all the required workflows for individual and group processing of CBF jobs, CBFDAP
uses a builtin job scheduler whose class diagram is shown in Figure 3.1. The JobScheduler class
implements the workflow engine. It maintains a priority queue of IJob interface implementations.
Each job such as individual CBF processing for GE scanners implements the IJob interface. The
IJob interface provides the execute() method for the core workflow functionality. In addition it
provides lifecycle methods such as cancel(), shutdown() and cleanup() and introspection/metadata
methods such as getMumberOfStages, getContextAsJSON(), getJobFactory().

The cancel() lifecycle method needs to be implemented for an cancelable job. This method sets
a a flag. The logic in execute() method needs to check this flag before starting any time consuming
substep for timely job cancellation. The cleanup() method allows the job to cleanup its temporary
files for example. It is called by the job scheduler at the end of the job. The shutdown() method is
called before permanent removal of the job from job queue.

A job can have human intervention step such CBF job with manual ventricular annotation in
CBFDAP. The job scheduler queries the IJob interface via the getNumberOfStages() method for
the number of stages of the particular job. After each stage, the job scheduler waits until the job is
resumed. The user interacts with the workflows thru the job management panel of the web interface
from which running jobs can be canceled or waiting jobs can be resumed.

If a context is attached to the job (used for user-interaction and/or persistent jobs surviving
server restart) getContextAsJSON method returns it as string in JSON representation. Jobs that
require human intervention can survive server startups. These kind of jobs can remain idle in the
system sometimes for weeks till the job owner attends them. The job scheduler persists the job
context for each job in the database and uses it to revive human intervention waiting jobs after a
server maintenance. To accomplish this it calls getJobFactory() method on IJob interface which
creates a new job instance using the passed in job context information. This method is called on
each revival eligible job interrupted during the server shutdown by the job scheduler before resuming
them.

The job scheduler receives status updates from the jobs its manages using an event driven mech-
anism. It implements the IJobEventListener interface. Each job type that is interested providing
status information sends a JobEvent to IJobEventListener registered with the managed job by the
job scheduler.

The handling of a job submission submitted by an end user is diagrammed in Figure 3.2.

12

Efficient Multiple CBF Processing Workflow Support 13

Figure 3.1: Job Scheduler Class Diagram.

3.2 Efficient Multiple CBF Processing Workflow Support

• Each CBF processing workflow is identified by a combination of input options selected by the
user during job submission.

• On the file system, for each unique combination a new derived data directory is created with
an increasing numeric ID suffix for uniqueness. The directory naming format is derived.¡ID¿

• The combinations of the input options is maintained in the relational database schema and an
XML containing this information is created under the derived directory for the corresponding
workflow on the file system.

• CBFDAP, CBF workflow handler maintains rules about processing option types, how they
map to internal processing steps of the CBF workflows, their outputs and order.

• At each job submission, CBFDAP checks if there are any previous runs. If so, it checks, using
the maintained rules, the longest uninterrupted chain of the internal processing steps of the
previous runs.

• If the longest uninterrupted chain has nonzero length,the processing uses the output files
generated by the matching previous run at the end of the matching chain avoiding unnecessary
repetition of already finished internal processing steps.

• For example, if a second worflow on the same scan data also needs fieldmap, the fieldmap
corrected BRIKs from the derived data folder of the previous run is be used. Only the non-
matching portion of the second workflow is be processed.

August 13, 2013

Efficient Multiple CBF Processing Workflow Support 14

Figure 3.2: CBF Job Processing Sequence Diagram.

August 13, 2013

Chapter 4

Consolidated Search Services

4.1 CBFDAP Search Framework

The CBFDAP search framework consists of

• a generic web client component that the user interacts with to build a search query.

• a generic server side search mechanism

The user can search on two main types of CBFDAP metadata

• Clinical Assessments

• Provenance Data including quality measures

The search framework currently used for data set selection for the group analysis job (such
as ROI analysis) submission. A more detailed sequence of operations for an end user search on
CBFDAP is as follows

• Using the web client search component in CBFDAP web app on any of the three locations
identified as needing search, the user adds conditions to limit the dataset returned/operated
on.

• The web client search component builds an intermediate representation for the conditions and
sends it to the server

• The query integrator on the server side splits the conditions into three main queryable types
(clinical assessment, provenance, derived data) and sends them to their corresponding query
processor components.

• Each query processor converts the conditions into corresponding database queries for the
relevant database tables and returns the results back to the query aggregator. Each query
processor runs asynchronously.

• The query aggregator combines results coming from the individual query processors also
ensuring that all the boolean conditions are satisfied before returning the combined resultset
to the user.

The main goal of CBFDAP search framework is to provide an unified, dynamic interface for
CBF data set retrieval needs in CBFDAP web app.

15

CBFDAP Search Framework 16

Figure 4.1: Query Aggregation Class Diagram.

Figure 4.2: Generalized Search Sequence Diagram.

August 13, 2013

Chapter 5

Data Management

5.1 Assessment Management

5.1.1 Score Values Display Layout Management

clinical.web.helpers.ScoreValuesDisplayHelper prepares display layout beans for the assessment value
display as used in SVResults.jsp and SegmentMan.jsp.

SubjectVisitManagementForm in clinical.web.forms package is the form bean for JSPs Sub-
jectList.jsp, SubjectDetail.jsp, VisitMan.jsp, SubjectMan.jsp, ShowEntries.jsp, SegmentMan.jsp. Sub-
jectVisitManagementForm.getScoreValuesDisplayLayout() uses ScoreValuesDisplayHelper to pre-
pare a ScoreValuesDisplayLayout presentation object holding row by row layout for an assess-
ment.

SubjectVisitManagementForm.getScoreValuesDisplayLayout() is stateful, i.e. increments the in-
stance variable currentAsIdx every time it is called.

SubjectManagementHelper in clinical.web.action package also uses ScoreValuesDisplayHelper.

5.2 Subject Management

5.2.1 Adding a new subject

A new subject creation is handled by SubjectAdd.jsp using the form bean SubjectVisitManagement-
Form. The corresponding Struts action is SubjectManagementAction.

5.2.2 Finding/Selecting a subject

In the Find Subjects screen SubjectSearch.jsp, there are two possible ways to find a subject. Ei-
ther you query for the subject you are looking for or select it from the list provided in the ’Find
Subjects’ screen. The controller for this JSP page is SubjectManagementAction with the form bean
SubjectVisitManagementForm. This page is dispatched from the left menu, also using SubjectMan-
agementAction as controller via the action method showFindSubjectsScreen.

If you choose a subject from the subjects list and doubleclick on it, the action will be handled
by manageSubjects method of the controller SubjectManagementAction.

If you choose query for subjects option, this action will be handled by findSubjects method of
SubjectManagementAction. The results will shown via the JSP FoundSubjectList.jsp. Pressing the
Edit button next to the desired subject in this screen is also handled by manageSubjects method
of SubjectManagementAction.

17

Experiment Management 18

5.2.2.1 Details of manageSubjects action

In manageSubjects action, first, the corresponding record from nc humansubject table is retrieved,
then the corresponding visits (if any) are retrieved from the database and sorted by descending
date. For the Subject Management screen to be shown, only those visits belonging to the current
experiments are set in the form bean. After that the experiment records for the experiments this
subject is participating are retrieved from the database.

The visit type is retrieved from database if not cached already using an implementation of IDB-
Cache interface gotten via the ServiceFactory. IDBCache provides caching support for the mostly
static tables of the CBFDAP database. The caching mechanism provided by the implementation
uses lazy loading and the cache is not released till the web server/container is restarted. Whenever
the nearly static state cached is changed via the web application, the cache is refreshed by using
forceRecache option in IDBCache method calls. Then, the protocol info is retrieved from cache
via IDBCache interface. Afterwards, the bookkeeping for the studies of the visit to be shown in
the ’Subject Management’ screen is done. Most of the functionality in manageSubjects method
is delegated to the helper class SubjectManagementHelper. Also the segment information for the
visit/study to be displayed is set in the form bean.

In the current implementation, a segment can directly belong to a visit without being associated
with a study. Those segments are grouped under the virtual study Default Study. Also, the
segments are numbered uniquely under a visit meaning that the segments belonging to a study are
not numbered starting from one, for each visit they are numbered starting from one.

5.2.3 Subject Management Screen

In subject management screen (SubjectMan.jsp, you view subject summary data , his/her latest
visit and its segments, navigate between visits etc. The controller for this JSP page is SubjectMan-
agementAction. Also visit/study/segment management is spawn from this page. The controller
SubjectManagementAction also handles visit/study/segment management. The form bean is Sub-
jectVisitManagementForm.

5.2.4 Segment Management

SegmentManagementAction is the controller for segment and corresponding assessment manage-
ment. The assessment management is delegated to other components. It provides segment edit
and add functionalities which are persisted to the database. Change segment functionality is is
for switching between segments in the same segment management screen. The assessment related
functions provided are adding an assessment (first or second entry for double entry) editing any of
the assessment entries via delegation to GAME. The first entry can be deleted from the database
also using SegmentManagementAction. The methods in SegmentManagementAction use the corre-
sponding Session Facade interfaces for business logic.

SegmentManagementAction also provides entry points for the reconciliation of the assessment
entries, namely preparing view data to be shown on the reconciliation screen and showing a summary
of both entries with indication of any missing data in any of the entries as an reconciliation aid.

Each segment contains associated protocol information. The helper class SubjectManagemen-
tHelper is responsible for gathering protocol information amongst others.

5.3 Experiment Management

Experiment Management involves creation of new experiments, adding new study groups, enrolling/
unenrolling subjects to an experiment. The main page (screen) for experiment management is Exp-

August 13, 2013

Experiment Management 19

Man.jsp. The controller is ExperimentManagementAction and the form bean is ExperimentMan-
agementForm.

5.3.1 Finding/Selecting an Experiment

The main page for viewing all available experiments and navigating into one is ExpFind.jsp. The
controller is ExperimentManagementAction and the form bean is ExperimentManagementForm.

5.3.2 Study Group Management

5.3.2.1 Adding a new Study Group

A new study group data is entered in the form provided by StudyGroupMan.jsp. The controller for
this page is StudyGroupManagementAction.java. The form bean used is ExperimentManagement-
Form.

August 13, 2013

Chapter 6

Clinical Data Queries

6.1 Assessment Query Builder Wizard

The SelAs.jsp is the page where the assessment on which scores the query will built, is selected.
The controller is SelectAssessmentAction. Also, in this page one of saved query templates can be
loaded. The form bean is AsQueryBuilderForm.

The CollectQuery.jsp is the page where the user constructs a query on the scores from asssess-
ments he/she selected. The controller is AsQueryAction.java and the form bean is AsQueryBuilder-
Form.java. The Struts action path /collectquery dispatches the assessment query to AsQueryAction
which forwards the results to SvResults.jsp page.

AsQueryAction handles query build and submission to one or more databases (doQuasiMediat-
edQuery), going to previous wizard page or saving the query for later usage as a template.

In AsQueryAction.doQuasiMediatedQuery, first the user query input is validated, then an op-
erator tree (intermediate representation of the query) which is traversed by visitors to generate an
SQL query or XML representation etc, is generated. For the derived data, another operator tree is
generated, if there are any derived data related queries. The MultiSiteQueryHelper is responsible
for preparing queries for multiple databases and sending them to the connected databases in paral-
lel and combining the results. The parallel queries are handled by MultiSiteQueryWorker classes,
which delegate the query submission to DebugAssessmentService or DerivedDataService classes,
calling either queryForScores() or getSubCorticalValuesForSubjects() methods.

The DerivedDataService.queryForScores() method uses the visitor MultiSiteAssessmentQuery-
Builder to build the SQL query for the given site.

The query results are prepared by AsQueryHelper.processQueryResults() method.
The query results are displayed by SVresults.jsp grouped by subject. Subject details drilldown

is thru the generated links in SvResults.jsp which dispatch the request to action /subvisit handled
by the controller SubjectVisitAction.java and the subject details are shown in SubjectVisit.jsp.

6.2 Transparent Handling of DBMS SQL differences in com-
plex queries

The query builders in CBFDAP web app use strategy design pattern to separate invariant part
of SQL query building from variant part. The variant part is provided by the implementations
of ISQLDialect interface. The query builders only interact with ISQLDialect interface, while the
factory method in ServiceFactory classes is responsible to provide an apropriate implementation
depending on the DBMS type (currently either OracleSQLDialect or PostgresSQLDialect). For new

20

Transparent Handling of DBMS SQL differences in complex queries 21

complex query building tasks for which single table mapped DAOs are inefficient and/or inadequate,
you should be using this mechanism to cope with DBMS supported SQL language differences.

August 13, 2013

Chapter 7

Subject Assessment Management

Assessments are associated with a particular subject, hence they are managed wrt to their cor-
responding subject. A simplified class diagram for Subject Assessment Management section is
provided in Figure 7.1. ServiceFactory handles the actual creation of the implementation of ISub-
jectAssessmentManagement based on the database configuration and the database ID provided
by the user. The logic of some of the important methods in ISubjectAssessmentManagement is
summarized below.

Figure 7.1: Simplified class diagram for Subject Assessment Management.

The insertScoreValues method, first retrieves the Storedassessment record for the assessment of
the subject for the given experiment, visit and segment. If the record is not available, it throws

22

Reconciliation 23

an SubjectAssessmentManagementException. For each of the provided score values calls the in-
sertScoreValue method to insert the score value to corresponding NC ASSESSMENTXXXX table
, also handling the missing value(s) if any.

The insertAssessmentValues method, looks for a corrsponding Storedassessment record in the
database, if not creates a new one. It also updates informant information (if necessary) and for
each of the provided score values calls the insertScoreValue method to insert the score value to
corresponding NC ASSESSMENTXXXX table , also handling the missing value(s) if any.

7.1 Reconciliation

For the double entry functionality, data reconciliation functionality is provided by portions of ISub-
jectAssessmentManagement interface and its implementations.

To retrieve data for both unvalidated entries for reconciliation use the getReconciliationData-
ForAssessment method on ISubjectAssessmentManagement. This method retrieves the unvalidated
score values form the database, gets the question text information to be used as visual clue for the
user during reconciliation from the database if the question data is available and creates a lookup
table keyed by score name of ReconScoreValueInfo objects.

To check for readiness of an assessment for reconciliation, invoke the isAssessmentReconciled
method. This method , like the rest of the reconciliation related functionality assumes that the
score names within a score are unique. This method will return false if any of the two entries have
any score values have a missing value without proper indication of a reason for the missing value.

To check if the assessment is alredy reconciled invoke the isAssessmentReconciled method.
The reconciliation information is persisted to the database via a call to the saveReconciledAssess-

mentData method. This method only creates a third entry in the corresponding NC ASSESSMENT-
XXXX tables for the mismatched first and second entries to score the reconciled and validated score
value, for other score values with both matching entries, the first entry is tagged as valid by con-
vention.

The controller for reconcilation functionality is ReconciliationAction, the form bean is Reconcil-
iationForm and the corresponding JSP is Recon.jsp.

7.2 GAME

GAME consists of two classes, namely AssessmentManagementAction.java and AssessmentMan-
agementHelper.java. AssessmentManagementAction class is the Struts action handling the screens
of any assessment generated by CALM.

The setFormDataForPage method sets the fields corresponding for the page to be shown using
reflection. The type metadata is gotten from the corresponding database variables info (score
information).

7.2.1 AssessmentManagementHelper

The AssessmentManagementHelper class is responsible for preparing/querying meta data for the
form handling by accessing/modifying the form bean via Java Reflection. The AssessmentMan-
agementHelper class is a singleton discovering and keeping a cache of form bean metadata lazily
initialized at the first time the singleton is accessed. The discovery and caching mechanism can be
summarized as follows:

1. From the package name, determine the full path of the class files for the form beans.

2. For each form bean detected

August 13, 2013

GAME 24

(a) question the form bean class about its assessment data as stored in the database and
form page variable mapping information.

The form bean package is currently set to clinical.web.game.forms. All the CALM generated form
beans are stored under this package. For each form bean, its metadata is stored in an object
of class type FormBeanInfo. This object groups metadata per form page. For an online assess-
ment, each page of the paper form is mapped (by convention) to two JSPs (one for the online
form and one for Tiles template engine) both generated by CALM and stored under $CLINI-
CAL HOME/web/pages/assessment directory. For each assessment there is a single form bean
generated by CALM and put under $CLINICAL HOME/src/clinical/web/game/forms directory.

A particular FormBeanInfo object holds PageVariableInfo objects for online form property
name to database score name mapping, PageQuestionInfo objects for question related metadata
and MandatoryFieldMetaData objects to hold metadata associated with mandatory fields in the
form. The question types currently supported are as follows;

1. single-answer, single score

2. single-answer, multiple score

3. multiple-answer, single score

4. multiple-answer, multiple score

A PageVariableInfo object holds the form property name associated with the corresponding score in
the database for the assessment, the corresponding score name as in the database, the page number
on which the form property value displayed/retrieved and an optional lookup table for metadata
associated with the form property(page variable) as name-value pairs.

A PageQuestionInfo object holds the question number as assigned by CALM, question type
(single-answer or multiple-answer), list of score name(s) (as in the database) associated with this
question, the minimum and maximum number of answers allowed if the question is a multiple-
answer one, a lookup table for score name and corresponding ID association used for web form
hidden field name generation if the question is a multiple-answer one, and the page number on
which the question will be displayed. GAME numbers pages internally starting from one.

A MandatoryFieldMetaData object holds the mandatory field name and an optional lookup
table for metadata associated with the mandatory field as name-value pairs. One usage scenario is
for dynamic dropdown for the clinical rater to associate an SQL query with the mandatory field to
dynamically populate the corresponding dropdown.

7.2.2 AssessmentManagementAction

The controller AssessmentManagementAction is responsible for the lifecycle management of an on-
line assessment excluding the startup of the online assessment management workflow. When a
user selects an assessment from the available assessments dropdown list on Segment Management
screen and presses ’Add Assessment’ button, the controller SegmentManagementAction intercepts
it to start the lifecycle. In the addAssessment method of SegmentManagementAction class, the
singleton AssessmentManagementHelper is called to retrieve the corresponding form bean name for
the selected assessment. Any dynamic dropdowns in the form are populated with the help of As-
sessmentManagementHelper. Currently, only Clinical rater mandatory field dropdown is supported,
but a more generic mechanism is not difficult to implement when/if need arises. The addAssess-
ment method forwards directly to the controller named CADispatcherAction which is responsible
to figure out which online form page to show as the next screen. The controller of each JSP page
generated by CALM is AssessmentManagementAction.

August 13, 2013

GAME 25

7.2.2.1 Hooking up a new assessment with the GAME

While CALM generates the form bean and the corresponding JSPs for the online assessment, and
updates struts-config.cml.template file, it does not hook up the form with CADispatcherAction.
Currently , you need to go through following steps to hook a new assessment (assuming your
clinical assessment is named ca in CALM);

1. in clinical.web.Constants class, add a new constant variable TO CA with value to ca.

2. update switch logic in clinical.web.actions.CADispatcherAction

3. In web/WEB-INF/struts-config.xml.template, edit action named
<action path="/cadispatcher", add a forward tag like

<forward name="to_ca" path="/man_ca_Page1.do?action=Display"/>

where man ca Page1 is the action path param of the first form (page) of the online assessment.

4. delete web/WEB-INF/struts-config.xml to force regeneration by ant from the template file.

5. run ant (to recreate struts-config.xml from the template and compile code also)

August 13, 2013

