Posted By: NITRC ADMIN - Dec 2, 2017 Tool/Resource: Journals
The spatiotemporal pattern of pure tone processing: A single-trial EEG-fMRI study. Neuroimage. 2017 Nov 27;: Authors: Li Q, Liu G, Wei D, Guo J, Yuan G, Wu S Abstract Although considerable research has been published on pure tone processing, its spatiotemporal pattern is not well understood. Specifically, the link between neural activity in the auditory pathway measured by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) markers of pure tone processing in the P1, N1, P2, and N4 components is not well established. In this study, we used single-trial EEG-fMRI as a multi-modal fusion approach to integrate concurrently acquired EEG and fMRI data, in order to understand the spatial and temporal aspects of the pure tone processing pathway. Data were recorded from 33 subjects who were presented with stochastically alternating pure tone sequences with two different frequencies: 200 and 6400 Hz. Brain network correlated with trial-to-trial variability of the task-discriminating EEG amplitude was identified. We found that neural responses responding to pure tone perception are spatially along the auditory pathway and temporally divided into three stages: (1) the early stage (P1), wherein activation occurs in the midbrain, which constitutes a part of the low level auditory pathway; (2) the middle stage (N1, P2), wherein correlates were found in areas associated with the posterodorsal auditory pathway, including the primary auditory cortex and the motor cortex; (3) the late stage (N4), wherein correlation was found in the motor cortex. This indicates that trial-by-trial variation in neural activity in the P1, N1, P2, and N4 components reflects the sequential engagement of low- and high-level parts of the auditory pathway for pure tone processing. Our results demonstrate that during simple pure tone listening tasks, regions associated with the auditory pathway transiently correlate with trial-to-trial variability of the EEG amplitude, and they do so on a millisecond timescale with a distinct temporal ordering. PMID: 29191479 [PubMed - as supplied by publisher]
Link to Original Article |
You can link this page to your Slack channel. When you do this, every new posting on this NITRC page will trigger a short message on your Slack channel linking to the update. If you have the RSS App installed in your Slack workspace, you can paste this slash command directly into your channel:
/feed https://www.nitrc.org/export/rss20_forum.php?forum_id=8043
Full instructions for installing and using the RSS app with Slack feed to Slack can be found in the Slack Help Center.
This news item currently has no comments.