Posted By: NITRC ADMIN - Feb 27, 2018
Tool/Resource: Journals
 

fMRI Reveals a Novel Region for Evaluating Acoustic Information for Mate Choice in a Female Songbird.

Curr Biol. 2018 Feb 21;:

Authors: Van Ruijssevelt L, Chen Y, von Eugen K, Hamaide J, De Groof G, Verhoye M, Güntürkün O, Woolley SC, Van der Linden A

Abstract
Selection of sexual partners is among the most critical decisions that individuals make and is therefore strongly shaped by evolution. In social species, where communication signals can convey substantial information about the identity, state, or quality of the signaler, accurate interpretation of communication signals for mate choice is crucial. Despite the importance of social information processing, to date, relatively little is known about the neurobiological mechanisms that contribute to sexual decision making and preferences. In this study, we used a combination of whole-brain functional magnetic resonance imaging (fMRI), immediate early gene expression, and behavior tests to identify the circuits that are important for the perception and evaluation of courtship songs in a female songbird, the zebra finch (Taeniopygia guttata). Female zebra finches are sensitive to subtle differences in male song performance and strongly prefer the longer, faster, and more stereotyped courtship songs to non-courtship renditions. Using BOLD fMRI and EGR1 expression assays, we uncovered a novel region involved in auditory perceptual decision making located in a sensory integrative region of the avian central nidopallium outside the traditionally studied auditory forebrain pathways. Changes in activity in this region in response to acoustically similar but categorically divergent stimuli showed stronger parallels to behavioral responses than an auditory sensory region. These data highlight a potential role for the caudocentral nidopallium (NCC) as a novel node in the avian circuitry underlying the evaluation of acoustic signals and their use in mate choice.

PMID: 29478859 [PubMed - as supplied by publisher]



Link to Original Article
RSS Feed Monitor in Slack
Latest News

This news item currently has no comments.