Posted By: NITRC ADMIN - Apr 4, 2018 Tool/Resource: Journals
Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models. IEEE Trans Med Imaging. 2018 Apr;37(4):1011-1023 Authors: Ting CM, Ombao H, Samdin SB, Salleh SH Abstract We consider the challenges in estimating the state-related changes in brain connectivity networks with a large number of nodes. Existing studies use the sliding-window analysis or time-varying coefficient models, which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model, which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, and 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms -means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to the resting-state fMRI data, our method successfully identifies modular organization in the resting-statenetworksin consistencywith other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states. PMID: 29610078 [PubMed - in process]
Link to Original Article |
You can link this page to your Slack channel. When you do this, every new posting on this NITRC page will trigger a short message on your Slack channel linking to the update. If you have the RSS App installed in your Slack workspace, you can paste this slash command directly into your channel:
/feed https://www.nitrc.org/export/rss20_forum.php?forum_id=8474
Full instructions for installing and using the RSS app with Slack feed to Slack can be found in the Slack Help Center.
This news item currently has no comments.