Posted By: NITRC ADMIN - May 1, 2018 Tool/Resource: Journals
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data. Front Neuroinform. 2018;12:17 Authors: Ge B, Li X, Jiang X, Sun Y, Liu T Abstract The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks. PMID: 29706880 [PubMed]
Link to Original Article |
You can link this page to your Slack channel. When you do this, every new posting on this NITRC page will trigger a short message on your Slack channel linking to the update. If you have the RSS App installed in your Slack workspace, you can paste this slash command directly into your channel:
/feed https://www.nitrc.org/export/rss20_forum.php?forum_id=8544
Full instructions for installing and using the RSS app with Slack feed to Slack can be found in the Slack Help Center.
This news item currently has no comments.