Posted By: NITRC ADMIN - Jun 19, 2018 Tool/Resource: Journals
Visibility graphs for fMRI data: Multiplex temporal graphs and their modulations across resting-state networks. Netw Neurosci. 2017 Oct 01;1(3):208-221 Authors: Sannino S, Stramaglia S, Lacasa L, Marinazzo D Abstract Visibility algorithms are a family of methods that map time series into graphs, such that the tools of graph theory and network science can be used for the characterization of time series. This approach has proved a convenient tool, and visibility graphs have found applications across several disciplines. Recently, an approach has been proposed to extend this framework to multivariate time series, allowing a novel way to describe collective dynamics. Here we test their application to fMRI time series, following two main motivations, namely that (a) this approach allows vs to simultaneously capture and process relevant aspects of both local and global dynamics in an easy and intuitive way, and (b) this provides a suggestive bridge between time series and network theory that nicely fits the consolidating field of network neuroscience. Our application to a large open dataset reveals differences in the similarities of temporal networks (and thus in correlated dynamics) across resting-state networks, and gives indications that some differences in brain activity connected to psychiatric disorders could be picked up by this approach. PMID: 29911672 [PubMed]
Link to Original Article |
You can link this page to your Slack channel. When you do this, every new posting on this NITRC page will trigger a short message on your Slack channel linking to the update. If you have the RSS App installed in your Slack workspace, you can paste this slash command directly into your channel:
/feed https://www.nitrc.org/export/rss20_forum.php?forum_id=8705
Full instructions for installing and using the RSS app with Slack feed to Slack can be found in the Slack Help Center.
This news item currently has no comments.